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a b s t r a c t 

The fuzzy k-modes (FKM) is a popular method for clustering categorical data. However, the main problem 

of this algorithm is that it is very sensitive to the initialization of primary clusters, so inappropriate initial 

cluster centers lead to poor local optima. Another problem with the FKM is the equal importance of the 

attributes used during the clustering process, which in real applications, the importance of the attributes 

are different, and some attributes are more important than others. Some versions of FKM have been pre- 

sented in the literature, each of which has somehow solved one of the above problems. In this paper, we 

propose a new clustering method (FKMAWCW) to solve mentioned problems at the same time. In the 

proposed clustering process, a local attribute weighting mechanism is used to weight the attributes of 

each cluster properly. Also, a cluster weighting mechanism is proposed to solve the initialization sensi- 

tivity. Attribute weight and cluster weight are learned simultaneously and automatically during the clus- 

tering process. In addition, to reduce the noise sensitivity, a new distance function is proposed. So, the 

proposed algorithm can tolerate noisy environment. Extensive experiments on 11 benchmark datasets 

and an artificially generated dataset show that the proposed algorithm performs better than the state- 

of-the-art algorithms. This paper presents mathematical analyses to obtain updating functions, providing 

the convergence proof of the algorithm. The implementation source code of FKMAWCW is made publicly 

available at https://github.com/Amin- Golzari- Oskouei/FKMAWCW . 

© 2021 Elsevier Ltd. All rights reserved. 

1. Introduction 

Clustering is an important tool in data mining, machine learn- 

ing, pattern recognition, and computer vision [1–4] . Clustering 

aims to divide a series of samples into clusters so that the similar- 

ity within the clusters increases and the similarity between them 

decreases [5–8] . Clustering algorithms are divided into two groups 

according to the data type: numerical and categorical clustering al- 

gorithms. Each attribute in the categorical data contains at least 

two distinct values with no precedence or delay. In other words, no 

particular order can be considered between these values. There are 

some challenges in clustering categorical data [ 9 , 10 ]: 1) for numer- 

ical data, the representative of each cluster (centers) often consists 

of the mean of the samples in each attribute domain of the clus- 

ter. Calculating the mean for categorical data is impractical, and 2) 

standard distance functions such as Manhattan and Euclidean for 

categorical data are unusable because there is no order between 

categorical values [ 11 , 12 ]. 
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The fuzzy k-modes (FKM) clustering algorithm [13] is one of the 

most popular clustering algorithms that is applied for clustering 

categorical data [14] . FKM has shown successful results in various 

applications such as [15–18] . In this method, a sample can be as- 

signed to several clusters with different degrees of membership. 

Fuzzy clustering methods (such as FKM) compared to hard cluster- 

ing methods (such as k-modes (KM) [19] ) can retain more informa- 

tion and achieve better results [ 20 , 21 ]. Also, the fuzzy membership 

function in this algorithm helps us to discover the complex rela- 

tionships between a sample and all clusters more accurately [22] . 

However, the main problem of the FKM algorithm is its sensi- 

tivity to the initial cluster centers, which can drop its performance 

in clustering [ 23 , 24 ]. Another problem with this algorithm is that 

it considers the same importance for all attributes, while in many 

real applications, some attributes are more important than others, 

and giving more importance to these attributes in the clustering 

process improves the quality of clustering [ 17 , 25 ]. As the number 

of attributes increases, some attributes may be less important in 

some clusters while more important in others. Hence, consider- 

ing the same weight for all of the attributes makes the result of 

clustering unsatisfactory [ 17 , 25 ]. Also, these methods are extremely 

sensitive to noise, due to Hamming distance. 
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Regarding the FKM’s sensitivity to the initialization problem, 

various methods have been proposed so far. Among them, some 

methods such as [23] , try to eliminate dependence on random ini- 

tial conditions by spreading the initial cluster representatives in 

the data space at the initialization step. Some methods apply a 

scheme to prevent the formation of low-quality clusters during 

the algorithm’s iteration. For example, the methods presented in 

[26] start from random centers, and the desired centers are calcu- 

lated automatically during algorithm iterations. 

To solve the second problem of FKM (i.e., the problem of giving 

equal importance to various attributes), different attribute weight- 

ing techniques have been proposed, as well. One effective solu- 

tion for identifying important attributes is to apply a weighting 

scheme on the attributes [27] . Attribute weighting can be classi- 

fied into two general groups as follows: 1) global attribute weight- 

ing (same weights for attributes in all clusters), and 2) local at- 

tribute weighting (different weights for attributes in each cluster). 

The local weighting mechanism has shown a better performance 

than the global weighting scheme. 

As mentioned before, k-partitioning clustering methods (such as 

KM and FKM) methods are sensitive to initialization. This sensitiv- 

ity exists in both algorithms with and without attribute weight- 

ing. In fact, attribute weighting is necessary but not enough. Re- 

cently in [28] , to overcome the two mentioned problems at the 

same time, a new fuzzy c-means (FCM) clustering algorithm based 

on the local attribute weighting and cluster weighting schemes 

was proposed. In this method, cluster weighting was used to re- 

duce the FCM’s sensitivity to the selection of initial centers, and 

attribute weighting was used to increase the accuracy of the clus- 

tering. However, this method, such as other FCM-based methods, 

is not suitable for categorical data clustering due to the distance 

function used. Our method is a modified version of this method 

that is adapted for categorical data clustering by introducing a new 

distance function. 

In this paper, inspired by [28] , we present a new clustering 

method to solve mentioned problems simultaneously. In the pro- 

posed FKMAWCW algorithm, each attribute is weighted locally (as- 

sign different weights for attributes in each cluster). We also assign 

weight to clusters to handle the initialization problem. Calculating 

the clusters’ weight is performed based on the sum of intra-cluster 

weighted-feature distances (SIWD). Cluster weights are calculated 

automatically based on the samples assigned to the clusters during 

iteration. These weights prevent the creation of clusters with large 

SIWDs, and systematically, higher-quality clusters are obtained re- 

gardless of the initial centers. Also, we define a new distance func- 

tion based on a combination of frequency probability-based dis- 

tance [29] and non-Euclidean distance [30] . Using the proposed 

distance function, the proposed algorithm is robust to noise. In this 

way, the proposed algorithm can tolerate noisy environment. 

The performance of the proposed approach is evaluated on 11 

benchmark datasets and compared with the results of other suc- 

cessful clustering algorithms. The obtained results show the high 

efficiency of the FKMAWCW against the competitors. Extensive ex- 

periments are performed to evaluate the effectiveness of each so- 

lution applied in the proposed approach. 

The remainder of the paper is organized as follows: Section 

2 provides an overview of existing clustering methods. In Section 3 , 

the proposed FKMAWCW method is described in detail. In Section 

4 , the experimental results are presented. In Section 5 , the conclu- 

sions and possible future works are discussed. 

2. Related work 

Here, we review existing solutions to each of mentioned chal- 

lenges in Section 1 . Subsection 2.1 reviews the related works for 

reducing the initialization sensitivity, and Subsection 2.2 reviews 

related works based on the attribute weight mechanism. 

2.1. Methods for reducing initialization sensitivity 

Initialization is important in k-partitioning clustering methods. 

Selecting appropriate initial centers is crucial for achieving a good 

local minimum [31–34] . Various methods have been introduced to 

solve the problem of sensitivity to initialization, and here some of 

these works are reviewed. 

Wu et al. [35] proposed an initialization method based on den- 

sity function. The problem with this algorithm is that the complex- 

ity of this algorithm is exponential. To reduce the complexity, ran- 

dom sampling is suggested. Due to the randomness of this step, 

the same results may not be obtained in all restarts [36] . 

In 2009, Cao et al. [24] introduced the initialization method 

that works by the distance between samples and the density of 

samples. Their method selects a sample with the highest mean 

density as the initial center for a cluster. To calculate the other 

centers, the distance between the samples, the previously known 

clusters, and the mean density of the sample are used. The prob- 

lem with this method is that a boundary sample may be selected 

as the first center, which may influence the selection of the initial 

centers of the other clusters [37] . 

In [38] , Nguyen et al. introduced an extension of the k-means 

algorithm for clustering categorical data. They proposed a new dis- 

similarity measure based on an information theoretic definition of 

similarity that considers the amount of information of two values 

in the domain set. The definition of cluster centers is generalized 

using kernel density estimation approach. Then, the new algorithm 

is proposed by incorporating an attribute weighting scheme that 

automatically measures the contribution of individual attributes for 

the clusters. Recently, an improved version of this method was pre- 

sented in [39] . 

Khan and Ahmad [37] introduced an initialization algorithm for 

KM. In this algorithm, multiple data clustering is performed based 

on attribute values in different clusters. The outputs of this algo- 

rithm are used as the initial cluster centers. Also, they proposed a 

new mechanism for selecting the most relevant attributes, namely 

prominent attributes. 

Jiang et al. [23] proposed two methods for KM algorithm initial- 

ization, in which the samples are selected as the initial centers that 

are not outliers. The first method is the traditional distance-based 

outlier detection technique and the second method is the parti- 

tion entropy-based outlier detection technique. The weighted dis- 

tance function was also used to calculate the distance between two 

points. In this method, additional parameters are needed, such as 

the outlier-ness degree of the candidate points for the initial cen- 

ters and the distance between the initial centers of the candidate 

and all currently existing initial centers, which can be considered 

a limitation for this method [40] . 

Peng et al. [27] introduced an initialization algorithm for KM. 

This method consists of two steps. At first, the attributes are as- 

signed a global weight, and the distance between two points is 

calculated by the new criterion based on the attribute weighting. 

In the second step, the initial centers of the clusters are selected 

based on the weight of attributes and the combination of distance 

and density criteria. 

2.2. Attribute weighting methods 

Solutions that have been proposed for attribute weighting may 

be classified into two general groups. The first one is global at- 

tribute weighting, and the second one is local attribute weight- 

ing. These groups are introduced, the methods are reviewed, ad- 

vantages, and disadvantages of each method are expressed. 
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1) Global attribute weighting 

This group includes algorithms that assign weights to the at- 

tributes globally. That is, weights assigned to attributes are identi- 

cal in all clusters. 

For the first time, global attribute weighting was introduced in 

[18] . Subsequently, the papers [41–43] presented various versions 

of global attribute weighting clustering methods. However, most of 

these methods are the weighted versions of k-means or fuzzy c- 

means. 

In 2015, an algorithm based on FKM was introduced [17] . The 

attribute weighting mechanism in this algorithm improves the 

clustering quality. The proposed algorithm is not sensitive to noise, 

but it is sensitive to the initialization of cluster centers. 

Huang [43] proposed a weighted KM clustering algorithm to 

increase the efficiency of the KM algorithm for high-dimensional 

categorical datasets. This algorithm can automatically calculate 

weights in the k-mode clustering process. The attributes’ weight is 

calculated by the inverse ratio with the sum of variance within the 

cluster for each attribute. In this way, the noise attributes are rec- 

ognized, and their effect on clustering is significantly reduced. Al- 

though this algorithm has high clustering accuracy, it is extremely 

sensitive to initialization [44] . 

Bai and Liang [44] presented an extended version of the Huang 

method [43] . In this method, intra-cluster variance and inter- 

cluster information were used to calculate the attribute weight. 

They proposed new objective functions for several clustering algo- 

rithms (including hard and soft clustering). The balance of intra- 

cluster and inter-cluster information is made possible by new pa- 

rameters. Since there is no prior knowledge about these parame- 

ters, the exact values are adjusted by a trial and error process, so 

it is difficult to find the appropriate value [16] . 

In 2019, a new clustering method called genetic intuitionistic 

weighted FKM (GIWFKM) [15] was introduced. It is based on FKM 

and genetic algorithms. This paper first presents the intuitionistic 

weighted FKM (IWFKM) algorithm that uses intuitionistic sets, new 

distance function, and weighting attributes. Then, the GIWFKM al- 

gorithm is introduced, which combines the IWFKM and the genetic 

algorithms. The GIWFKM algorithm also uses the unsupervised at- 

tribute selection method. The attribute selection is based on the 

correlation coefficient to eliminate some redundant attributes that 

can both improve clustering performance and reduce computa- 

tional time. 

2) Local attribute weighting 

In contrast to the first group, this group includes algorithms 

that assign weights to the attributes locally, i.e., the weights as- 

signed to the attributes are different in each cluster. Recently, local 

attribute weighting methods have gained more attention for clus- 

tering categorical data. In this section, we review some of these 

works. 

Chan introduced an attribute-weighted clustering algorithm. 

The proposed algorithm is highly efficient for mixed datasets. How- 

ever, for categorical data, the Chan clustering algorithm faces some 

problems in calculating weights. If there are the same attribute val- 

ues in some dimension, weight one is given to those attributes and 

zero for the rest. This means that other attributes are ignored [25] . 

Cao [25] introduced a new weighting mechanism to solve the 

problem of Chan’s algorithm [45] . In this method, the weight of 

each attribute in each cluster is calculated based on complement 

entropy. 

Bai et al. [46] introduced the MWKM method, a local at- 

tribute weighted algorithm for high dimensional categorical data, 

an improved version for the KM algorithm. MWKM calculates two 

weights for each attribute and uses these weights to identify sub- 

sets of each cluster’s attributes. In addition to common parameters 

in weighted k-partition clustering algorithm (such as the number 

of clusters and attribute weight control parameter), their proposed 

algorithm requires two extra parameters T s and T v . These param- 

eters are used in the MWKM objective function to help identify 

optimal clusters. Experiments in MWKM show that the proposed 

algorithm improves the clustering accuracy, but it suffers from pa- 

rameter dependence [47] . 

In 2016, Chen et al. [48] proposed a soft subspace clustering 

algorithm for clustering categorical data using fuzzy attribute se- 

lection. The distance between samples is calculated using a proba- 

bilistic distance function. 

In 2018, Jia and Cheung [49] presented a soft clustering method 

with local attribute weighting for mixed data (combining numeri- 

cal and categorical data). In this method, the weight of attributes 

in each cluster is calculated by combining the intra-cluster sim- 

ilarity and the dissimilarity between the clusters. In the proposed 

method, the appropriate number of clusters is automatically found. 

In this method, the numerical attributes are converted to categor- 

ical attributes by a discretization method, which eliminates some 

important information [50] . 

In [51] , the authors developed a novel and robust FCM clus- 

tering algorithm. The proposed method combined FCM and non- 

negative spectral clustering into a unified model, which could fur- 

ther exploit the prior knowledge of data pairs such that both the 

quality of affinity graph and the clustering performance could be 

improved. Also, in [52] , a novel unsupervised feature selection 

method was proposed via exploiting the fuzzy membership. By 

embedding the FCM problem, the fuzzy information and cluster 

structure were well exploited. Due to the linearity of fuzzy mem- 

bership, the FKM problem will result in the trivial solution with- 

out the support of regularization. To tackle this problem, the FCM 

problem was embedded with the adaptive loss regularized regres- 

sion problem concerning the fuzzy membership, such that a sparse 

and nontrivial solution could be achieved. In other words, the em- 

bedded problem performed fuzzy clustering and subspace regres- 

sion simultaneously. Consequently, the closed-form solutions re- 

garding sparse fuzzy membership and projection matrix could be 

obtained to evaluate the contribution of each feature simultane- 

ously. 

Recently, new clustering methods, namely (deep clustering), 

have been introduced that combine deep neural networks and 

clustering methods. These methods use deep learning models to 

map raw data into embedded space. Then, clustering algorithms 

(such as k-means) are applied in this new embedded space. Some 

of these methods are introduced in [ 53 , 54 ]. These methods are 

able to cluster any type of data such as image, text, and so on. 

However, in this research field, to the best of our knowledge, a 

method specifically for clustering categorical data has not yet been 

introduced. 

3. Proposed approach 

3.1. Formulation of the FKMAWCW 

Concerning the FKM problems in Section 1 , we aim to design a 

clustering algorithm that effectively and efficiently reduces initial- 

ization sensitivity by weighting the clusters, and a local attribute 

weighting mechanism is used to improve clustering accuracy as 

well. Also, a new distance function was introduced, which is a 

combination of frequency probability-based distance [29] and non- 

Euclidean distance [30] . This distance function is not sensitive to 

noise. 

Eq. (1) shows the objective function in the proposed method: 

F ( Z , W , C , U ) = 

N ∑ 

n =1 

K ∑ 

k =1 

M ∑ 

m =1 

u nk 
αw 

q 

km 

z p 
k 
d 2 ( x nm 

, c km 

) . (1) 

3 
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Subject to 

u nk ∈ [ 0 , 1 ] , 

K ∑ 

k =1 

u nk = 1 where 0 ≤ u nk ≤ 1 ;

w km 

∈ [ 0 , 1 ] , 

M ∑ 

k =1 

w km 

= 1 where 0 ≤ w km 

≤ 1 ; (2) 

z k ∈ [ 0 , 1 ] , 

K ∑ 

k =1 

z k = 1 where 0 ≤ z k ≤ 1 . 

Here, U = [ u nk ] is a membership matrix, u nk represents the 

membership of n -th data point to the k -th cluster, C = [ c km 

] is a 

matrix of cluster centers, c km 

represent the m -th attribute in the 

k -th cluster, W = [ w km 

] is an attribute weight matrix, w km 

repre- 

sents the weight of m -th attribute in the k -th cluster, z = [ z k ] rep- 

resents cluster weight vector having the length of K, z k represents 

the weight of k -th cluster, N is the number of data points, M refers 

to the number of attributes, and K refers to the number of clusters, 

X = [ x nm 

] is a dataset matrix, x nm 

represents the m -th attribute in 

the n -th data point, and α is the fuzzification coefficient ( α > 1 ). 

The parameter q is in the range q < 0 and q > 1 . The parameter p

is within the range 0 ≤ p < 1 . p is a prior that controls the sen- 

sitivity of the weight change at each iteration. More details about 

parameter p are provided in Subsection 3.3 . d 2 ( x nm 

, c km 

) is a pro- 

posed distance function. More details about this distance function 

are provided in Subsection 3.2 . 

Minimizing F ( Z , W , C , U ) with respect to normalization con- 

straints Eq. (2) ) is a constrained nonlinear optimization problem. 

We first fix C, W , and Z and find necessary conditions on U to 

minimize F (U ) . Then we fix W , U , and Z and minimize F (C) with 

respect to C. then, we fix U , Z, and C and minimize F (W ) with 

respect to W . finally, we fix W , U , and C and minimize F (Z) with 

respect to C. then, we fix U , Z and C and minimize F (W ) with re- 

spect to W . The matrices U , C, W , and Z, are updated according to 

the Eqs. (3) to (8) respectively. The proof is shown in the Appendix. 

u nk = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 , i f x n, 1 ... m 

= c k, 1 ... m 

0 , i f x n, 1 ... m 

= c l, 1 ... m 

1 

∑ K 
l=1 

[
z 
p 
k 

∑ M 
m =1 

w 
q 
km 

d 2 ( x nm , c km ) 
z 
p 
l 

∑ M 
m =1 

w 
q 
lm 

d 2 ( x nm , c lm ) 

] 1 
( α−1 ) 

, else (3) 

where 1 ≤ l ≤ k and l � = k . 

c km 

= a mr ∈ DOM ( A m 

) , (4) 

where (see Eqs. (5) and (6) ): 

r = arg ma x 1 <t< n m 

N ∑ 

n =1 

u nk 
α, const raint s to x nm 

= a mt (5) 

N ∑ 

n =1 

u nk 
α, const raint s to x nm 

= a mr ≥
N ∑ 

n =1 

u nk 
α, 

const raint s to x nm 

= a mt (6) 

n m 

indicates the number of the m -th attribute domains. For m - 

th attribute, a mr and a mt indicate the r-th and t-th domains, re- 

spectively. 

w km 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
h m 

, i f D w km 

= 0 and h m 

= | { s : D w ks = 0 } | 
0 , i f D w km 

� = 0 and ∃ s where D w ks = 0 
1 ∑ M 

s =1 

[ 
D w km 
D w ks 

] 1 
q −1 

, i f D w ks � = 0 where ∀ 1 ≤ s ≤ M 

(7) 

where, D w km 

= 

N ∑ 

n =1 

u nk 
αd 2 ( x nm 

, c km 

) , 

z k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
g k 

, i f D z k = 0 and g k = | { l : D z l = 0 } | 
0 , i f D z k � = 0 and ∃ l where D z l = 0 

1 ∑ K 
l=1 

[ 
D z k 
D z l 

] 1 
p−1 

, i f D z l � = 0 where ∀ 1 ≤ l ≤ K 
(8) 

where, D z k = 

N ∑ 

n =1 

M ∑ 

m =1 

u nk 
α w 

q 

km 

d 2 ( x nm 

, c km 

) . 

3.2. Proposed distance function 

We define a new distance function based on a combination of 

frequency probability-based distance [29] and non-Euclidean dis- 

tance [30] . Using this distance function, noise attributes have less 

effect on the results during the clustering process. In this way, the 

FKMAWCW can tolerate noisy environment. Eq. (9) shows the pro- 

posed distance function. 

d 2 ( x nm 

, c km 

) = 1 − exp 
(
−γm 

( δ( x nm 

, c km 

) .p ( x nm 

= c km 

) ) 
2 
)

(9) 

where γm 

shows the inverse standard deviation from the mode 

(SDM) [55] of the m -th attribute of the x dataset. δ( x nm 

, c km 

) is 

defined as Eq. (10) . 

δ( x nm 

, c km 

) = 

{
1 − β, i f x nm 

= c km 

β, i f x nm 

� = c km 

(10) 

The parameter β is within the range of 0 . 5 < β ≤ 1 . If β = 1 , 

δ( x nm 

, c km 

) will become the conventional Hamming distance. 

Considering the attribute A m 

for x nm 

and c km 

, p( x nm 

= c km 

) is a 

probability where the values x nm 

and c km 

are equal. This probabil- 

ity is calculated based on the frequency of the state of x nm 

= c km 

in the whole dataset [29] ( Eq. (11) ). 

p ( x nm 

= c km 

) = p ( A m 

= x nm 

X ) . p −( A m 

= x nm 

X ) + p ( A m 

= c km 

X ) 

. p −( A m 

= c km 

X ) (11) 

Where 

p ( A m 

= x nm 

X ) = 

σA m = x nm ( X ) 

σA m ( X ) except to empty v alues 
(12) 

p −( A m 

= x nm 

X ) = 

σA m = x nm ( X ) − 1 

σA m ( X ) except to empty v alues − 1 
(13) 

In Eqs. (12) and (13) , the operation σA m = x nm (X ) counts the num- 

ber of samples in the data set X that have the value x nm 

for at- 

tribute A m 

. 

3.3. Discussion 

As stated in the introduction, k-mode based algorithms are sen- 

sitive to initialization. After a bad initialization, some clusters with 

large SIWDs 1 (sum of the intra-cluster weighted-feature distance) 

may be merged, and those with low SIWDs are broken into smaller 

clusters. Therefore, even if there are some clusters with balanced 

SIWDs in the dataset, after running the algorithm, some clusters 

with unbalanced SIWDs may be formed. This problem often hap- 

pens in k-mode clustering-based algorithms. Preventing the forma- 

tion of large SIWD clusters helps evade poor solutions after a bad 

initialization and balances the clusters [ 56 , 57 ]. Weighting the clus- 

ters solves this problem to a large extent by balancing the SIWD of 

the clusters. 

1 SIWD can also be interpreted as the intra-cluster variance. In this case, the clus- 

ter variance is defined as the sum, and not the average, of the squared distances 

from the instances belonging to the cluster to its center. In fact, SIWD is exactly 

the same D z k used in Eq. (8) . 

4 
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To investigate the cluster weighting mechanism, inspired by the 

research carried out in [56] , we rewrite the proposed objective 

function as Eq. (14) . 

F ( Z , W , C , U ) = 

K ∑ 

k =1 

z p 
k 
SIW D k = 

K ∑ 

k =1 

z p 
k 

K ∑ 

n =1 

M ∑ 

m =1 

u nk 
αw 

q 

km 

d 2 ( x nm 

, c km 

) 

(14) 

Considering Eq. (12) , the weight of the clusters is obtained by 

Eq. (15) . 

z k = 

SIW D k 

1 
1 −p ∑ K 

l=1 SIW D l 

1 
1 −p 

(15) 

where SIW D k indicates k -th cluster SIWD. 

According to Eq. (15) , for a given partitioning of the data, the 

weights are set proportionally to the cluster SIWDs. The weight 

of attributes and clusters are involved in the assignment of sam- 

ples to clusters ( Eq. (3) ). Apparently, for higher weighted clusters, 

the weighted distance of their representatives from the samples in- 

creases. Consequently, a cluster with large SIWD may lose some of 

its current samples that are away from its center, and its SIWD is 

expected to decrease. At the same time, low SIWD clusters, due 

to the small weights, may also acquire samples that are not close 

to their centers, and their SIWD will increase. The used weight- 

ing scheme limits the emergence of large SIWD clusters and allows 

high-quality solutions to be systematically uncovered, irrespective 

of the initialization. 

As mentioned earlier, similar to the method presented in [56] , 

the value of p is chosen in the range 0 ≤ p < 1 . For p = 1 , the es- 

timation of the weights simplifies to Eq. (16) : 

z k = 

{
≈ 1 . k = argma x 

1 ≤ ˙ k ≤K 
SIW D ˙ k 

≈ 0 . otherwise. 
(16) 

In each restart of the algorithm, only the cluster with higher 

SIW D k gains a weight close to 1, and as a result, all the samples of 

that cluster are randomly transferred to one of the clusters having 

a weight close to zero. This leads to the formation of an empty 

cluster, and the algorithm will not continue properly. If p > 1 , the 

objective function mainly focuses on the weighting of the clusters, 

and as a consequence, weights become more influential than the 

other parameters. Hence, it does not converge to a minimum point. 

Therefore, only 0 ≤ p < 1 can be permitted. 

Furthermore, p has an inverse relationship with the similarity 

measure between the weights of the clusters (see Eq. 15 ). It can 

be shown that, the greater (smaller) p value, the less (more) sim- 

ilar the weight values become, as the relative differences of the 

SIWDs among the clusters are enhanced (suppressed). This remark 

also holds for the z k 
p values, which are the actual coefficients used 

in the objective function (see Eq. 1 ). To clarify this, we define 
z k 
z ˙ k 

as 

the similarity ratio between the weights of the clusters (see Eqs. 

(17) and (18) ). If the value of this ratio is close to 1, it would indi- 

cate greater similarity between the weights of the clusters. 

z k 
z ˙ k 

= 

(
SIW D k 

SIW D ˙ k 

) 1 
1 −p 

(17) 

z k 
p 

z ˙ k 
p 

= 

(
SIW D k 

SIW D ˙ k 

) p 
1 −p 

(18) 

Considering 0 ≤ p < 1 , as p increases, the value of the 1 
1 −p and 

p 
1 −p exponents grow, thus the relative differences of the cluster SI- 

WDs are enhanced, and both ratios deviate more from 1, i.e., the 

weights and coefficients z k 
p attain less similar values (the exact 

opposite holds when p is decreased). In other words, p adjusts how 

intensely the differences of the cluster SIWDs are reflected on the 

weights. 

Therefore, for a high p value ( p ∼= 

1 , p � = 1 ), large SIWD clus- 

ters accumulate considerably higher z k and z k 
p values compared to 

low SIWD clusters, resulting in an objective that severely penalizes 

clusters with high SIWD. Note that an extremely high p may force 

clusters with large SIWD to lose most, or even all their samples, as 

their enormous weights will excessively distance the samples from 

their centers ( Eq. (4) ), something not desired of course. 

3.4. pseudo-code of the FKMAWCW 

The pseudo-code of the FKMAWCW clustering method shows 

in Fig. 1 . Similar to the method presented in [56] , to find the ap- 

propriate value of p, we apply an iteration-based approach using 

three parameters p init , p step , and p max . We start the algorithm us- 

ing a small value ( p init ) for p. In each iteration, we increase p

as much as p step until the maximum value ( p max ) is obtained. If 

an empty cluster or a cluster with one sample appears, we de- 

crease p by p step regardless of whether p equals p max or not. At 

this point, we choose the values of u nk , w km 

, and z km 

correspond- 

ing to the previous p. The algorithm continues until in two suc- 

cessive iterations, the difference between the two objective func- 

tion values is less than the threshold value ε, or the number of 

iterations reaches the maximum ( t max ). The implementation source 

code of FKMAWCW is made publicly available at https://github. 

com/Amin- Golzari- Oskouei/FKMAWCW . 

3.5. Computational complexity 

According to the FKMAWCW, it can be found that the complex- 

ity of computation for the FKMAWCW depends on four steps. The 

steps for updating U , C, W , and Z. The computation complexity 

for the second step is O ( ˆ M KN ) , and for the rest of the steps is 

O ( MKN ) , where ˆ M = 

M ∑ 

m =1 

T m 

and T m 

indicate the number of m -th 

attribute domains. Thus, the computational complexity for an it- 

eration of the algorithm is O ( KN( 3 M + 

ˆ M ) ) . Although due to the 

extra step of calculating the weight of attributes and clusters, our 

algorithm has more computational complexity than the FKM algo- 

rithm. When ˆ M � M, the asymptotic difference is negligible. 

4. Experiments 

In this section, the performance of the proposed approach is 

evaluated. The results are compared with the following groups of 

methods: 

1) Initialization sensitivity reduction methods: 
• Wu [58] : A New Initialization Method for Clustering Cate- 

gorical Data 
• Khan [37] : Cluster center initialization algorithm for KM 

clustering; 
• Cao [24] : A new initialization method for categorical data 

clustering; 
• Jiang [23] : Initialization of KM clustering using outlier de- 

tection techniques 
• Peng [27] : Attribute weight-based clustering centers algo- 

rithm for initializing KM clustering. 
• Mod-2 [38] : A k -Means-Like algorithm for Clustering cate- 

gorical data using an information theoretic-based dissimilar- 

ity measure; 
• Mod-3 [39] : A method for k-means-like clustering of cate- 

gorical data; 

2) Attributes-weighted methods: 
• IWFKM [15] : intuitionistic weighted fuzzy k -modes algo- 

rithm for categorical data; 

5 
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Fig. 1. Proposed clustering algorithm. 

• EWKM [25] : A weighting KM algorithm for subspace clus- 

tering of categorical data; 
• Saha [17] : Categorical FKM Clustering with Automated At- 

tribute Weight Learning; 
• SBC[59]: space structure and clustering of categorical data; 
• Chan [45] : An optimization algorithm for clustering through 

weighted dissimilarity measures 
• Jia [49] : Subspace Clustering of Categorical data 

Parameter ε and the maximum number of iterations are com- 

mon in the implemented methods, which are set to 10 -5 and 100, 

respectively. The parameter α in fuzzy algorithms is set to 2. In 

the FKMAWCW, the required parameters are set as follows: p step = 

0 . 01 , p init = 0 , p max = 0 . 5 , q = 2 , and β is chosen from the range 

β ∈ { 1 , 0 . 9 , 0 . 99 } . In the experiments, the best results for com- 

pared algorithms have been quoted directly from the relevant arti- 

cles. 

4.1. Dataset 

To evaluate the proposed method efficiency, the synthetic and 

real datasets were used as follows: 

1) Synthetic dataset 

To easily examine the efficiency of the solutions proposed in 

our method to solve each of the existing challenges, we use a syn- 
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Table 1 

Real-world dataset. 

Dataset 

Number of 

data points 

Number of 

dimensions 

Number of 

Classes 

Balance scale 625 4 3 

Car evaluation 1728 6 4 

Chess 3196 36 2 

Dermatology 366 34 6 

Lung 32 56 3 

Lymphography 148 18 4 

Mushroom 8124 22 2 

Nursery 12960 8 5 

Soybean 47 35 2 

Voting 435 16 2 

Zoo 101 17 7 

thetic dataset. In this dataset, there are 300 four-dimensional sam- 

ples in 3 classes, 100 samples per class. The domain of each at- 

tribute is a to j, i.e. DOM ( Feature m 

) = { a, b, c, d, e, f, g, h, i, j} , ∀ 1 ≤
m ≤ M, where M represents the total number of attributes. Sam- 

ples 1 to 100 are in class 1, and the first attribute values in them 

are a , samples 101 to 200 are in class 2, and the second attribute 

values in them are e , samples 201 to 300 are in class 3, and the 

third attribute values in them are j. The rest of the values in the 

entire dataset are randomly selected from a to j. 

2) Real-world dataset 

To evaluate the performance of the FKMAWCW and compare 

its results with other state-of-the-art methods, we use 11 standard 

and real-world datasets from UCI [60] data repository. The details 

of this dataset are summarized in Table 1 . 

4.2. Performance criteria 

The four criteria of the Adjusted Rank Index (ARI) [61] , Accuracy 

(ACC), Precision (PR), and Recall (RE) are used in the conducted ex- 

periments to measure the efficiency of the algorithms. 

Adjusted Rand Index: 

ARI ( T , C ) = 

2 ( ad − bc ) 

( a + b ) ( b + d ) + ( a + c ) ( c + d ) 
(19) 

In Eq. (19) , T is the target class label, C is the result of the clus- 

tering algorithm, a , b, c, d are the number of samples that are both 

in class similar to C and T , in one class in T but different in class 

C, in a class in C but different in T and in different classes in both 

T and C. 

Accuracy: 

ACC ( T , C ) = 

∑ K 
k =1 e k 
N 

(20) 

Precision: 

P R ( T , C ) = 

∑ K 
k =1 

(
e k 

e k + f k 
)

N 

(21) 

Recall: 

RE ( T , C ) = 

∑ K 
k =1 

(
e k 

e k + g k 
)

N 

(22) 

In Eqs. (20 to 22) , e k is the number of samples that are cor- 

rectly assigned to the class T k ( e k = | T k ∩ 

C k | ). f k is the number of 

samples that are incorrectly assigned to the class T k ( f k = | C k | − e k ). 

g k is the number of samples that are incorrectly rejected from T k 
( g k = | T k | − e k ). In this paper, the mean of these criteria is used per 

100 restarts. 

4.3. Experiment 1: the effect of attribute weighting 

In this section, we investigate the effect of the proposed at- 

tribute weighting schema on the final clustering results. We aim to 

examine whether the proposed algorithm, properly assigns weights 

to attributes or not. To this end, we use the synthetic dataset. To 

demonstrate the importance of each attribute in this dataset, we 

illustrate the synthetic dataset (see Fig. 2 ). As shown in this figure, 

it is understood that Cluster1 (samples 1 to 100), Cluster2 (sam- 

ples 101 to 200), and Cluster3 (samples 201 to 300) are mainly 

formed based on Attribute1, Attribute2, and Attribute3, respec- 

tively. In other words, some attributes in some clusters are noisy. 

These noise attributes include the fourth attribute in all three clus- 

ters, the second and third attributes in Cluster1, the first and third 

attributes in Cluster2, and the first and second attributes in Clus- 

ter3. These attributes do not provide useful information for op- 

timal clustering. This means that the first, second, and third at- 

tributes are more important in Cluster1, Cluster2, and Cluster3, 

respectively. 

The FKMAWCW is run on the synthetic dataset. We exam- 

ine the weights obtained for each cluster. Fig. 3 shows the final 

weights assigned to each of the attributes in the different clusters. 

According to this figure, it is observed that the FKMAWCW gives 

more weight to the first, second, and third attributes in Cluster1, 

Cluster2, and Cluster3, respectively. This level of difference in the 

weights obtained is in line with the prediction made on the data 

illustrated in Fig. 2 , indicating the proper performance of the lo- 

cal weighting method adopted in the proposed algorithm. In other 

words, the proposed algorithm can properly distinguish the noisy 

attributes from non-noisy attributes and give more weight to the 

non-noisy attributes in each cluster. 

4.4. Experiment 2: the effect of cluster weighting 

In this section, we investigate the effect of the proposed clus- 

ter weighting schema on the final clustering results. We run the 

proposed algorithm once by assigning weights to the clusters em- 

ploying our algorithm, and once without assigning weights. In the 

case of the latter experiment, we give the same weight for all 

the clusters so that z k = 

1 
K . In both experiments, the algorithm is 

restarted 10 0 0 times from the same randomly chosen initial cen- 

ters, and average results are reported. Considering the number of 

restarts 10 0 0 times, both appropriate and inappropriate initial cen- 

ters are covered. The clustering results from both experiments are 

presented in Fig. 4 . As shown in this figure, the proposed algo- 

rithm has a better performance through cluster weighting than the 

case without cluster weighting. When the weight is not assigned 

to the clusters, the efficiency of the proposed algorithm is de- 

creased. By using cluster weighting, the ACC, ARI, PR, and RE rates 

of the proposed method are improved 2.4%, 2.24%, 2.1%, and 1.51%, 

respectively. 

4.5. Experiment 3: robustness to noise 

As discussed in Subsection 3.2 , the proposed distance func- 

tion is robust to noise. To evaluate the robustness of the pro- 

posed distance function and compare it with other distance func- 

tions, in this experiment, we add noise to the synthetic dataset. 

Noise applied on synthetic datasets is a combination of empty 

and random (in range { a, b, c, d, e, f, g, h, i, j } ) values. This noise 
is applied on the synthetic dataset with different percentages 

(see Fig. 5 ). 

We run the FKMAWCW with different well-known distance 

functions on the synthetic dataset with different percentages of 

noise. The FKMAWCW, with all tested distance functions (the pro- 

posed, Hamming, and frequency probability-based distance func- 

7 



A. Golzari Oskouei, M.A. Balafar and C. Motamed Chaos, Solitons and Fractals 153 (2021) 111494 

Fig. 2. Synthetic dataset. 

Fig. 3. Weights assigned to the attributes of Cluster1, Cluster2, and Cluster3 in the synthetic dataset. 

tions), is restarted 10 times from the same randomly chosen initial 

centers. Table 2 shows the obtained results for all tested distance 

functions. As shown in Table 2 , the proposed method performs 

better than Hamming distance for all noise levels and has a lower 

performance than frequency probability for 25%, 30%, and 45% 

noise values. Although the frequency probability method works 

better for some noise levels, the result is extremely low for noise 

below 20%. Also, for noise below 20%, it has even lower overall 

performance than the Hamming distance. In general, the proposed 

algorithm with the new distance function has a better overall per- 

formance than the Hamming distance and frequency probability 

functions and is more robust to noise. 

To investigate the behavior of the objective function on a syn- 

thetic dataset with different noise levels, we illustrate the value of 

the objective function during the algorithm iterations (see Fig. 6 ) 

to show how the proposed algorithm alternates between the U , 

C, W , and Z optimization steps to get a local optimum of F . As 

shown in Fig. 6 , the value obtained for the objective function with 

the proposed distance function is reduced in the initial iterations 

markedly. Finding the suitable cluster centers in the initial itera- 

tions is the reason for such behavior. The value of the objective 

function has been significantly reduced from first to about 15th it- 

erations and slight decreases from iterations 15th to the end. This 

shows that the proposed algorithm achieves a nearly optimal so- 

lution in the initial iterations. Also, the overall convergence time 

(number of iterations) of the proposed distance criterion is less 

than the others. This indicates that the proposed method has good 

convergence. 

4.6. Clustering results on real-world datasets 

In this section, we evaluate the FKMAWCW and other algo- 

rithms on real-world datasets. 
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Fig. 4. Effect of cluster weighting on the quality of clustering on the synthetic dataset. 

Table 2 

Comparison of different distance functions with different percentages of noise. 

Distance Metric 

Noise 

5% 10% 15% 20% 25% 30% 35% 45% 50% 

Hamming ACC 0.8467 0.7637 0.6324 0.5870 0.5810 0.5593 0.5130 0.5222 0.5047 

ARI 0.5898 0.4759 0.2624 0.2190 0.1976 0.1895 0.1338 0.1137 0.0971 

PR 0.8528 0.7840 0.6240 0.5959 0.5858 0.5455 0.4742 0.5374 0.5372 

RE 0.8467 0.7637 0.6324 0.5870 0.5810 0.5593 0.5130 0.5222 0.5047 

Frequency 

probability 

ACC 0.7217 0.7314 0.6940 0.6678 0.6546 0.6387 0.5733 0.6121 0.5396 

ARI 0.4749 0.4540 0.3977 0.3554 0.2988 0.2634 0.1911 0.1893 0.1283 

PR 0.7843 0.7347 0.7056 0.6523 0.6505 0.6574 0.5777 0.6472 0.5650 

RE 0.7217 0.7314 0.6940 0.6678 0.6546 0.6387 0.5733 0.6121 0.5396 

Proposed ACC 0.8583 0.7973 0.7367 0.7200 0.6457 0.6473 0.6003 0.5500 0.5430 

ARI 0.6176 0.5107 0.4080 0.3875 0.2742 0.2588 0.1942 0.1335 0.1191 

PR 0.8632 0.8034 0.7390 0.7240 0.6515 0.6527 0.6114 0.5599 0.5544 

RE 0.8583 0.7973 0.7367 0.7200 0.6457 0.6473 0.6003 0.5500 0.5430 

4.6.1. Experiment 4: FKMAWCW algorithm vs. attributes-weighted 

methods 

This section considers evaluating the proposed FKMAWCW al- 

gorithm compared to the benchmark attributes-weighted algo- 

rithms in terms of the ACC and ARI . Note that 11 datasets are used 

to evaluate in the proposed FKMAWCW in Subsections 4.6.2 and 

4.6.3 . However, only 6 datasets are selected to compare with 

the benchmark algorithms because these are the mutual datasets 

that were used to conduct the experiment on both the pro- 

posed and the benchmark algorithms. The performance of the 

different methods is shown in Table 3 . This table shows the 

ACC , and ARI rates from top to bottom for each dataset, respec- 

tively. The results for compered methods have been quoted di- 

rectly from the relevant publications. In Table 3 , the best rates are 

bold-faced. 

It is not difficult to see that the proposed FKMAWCW algorithm 

outperforms its rivals since it achieves better results on 5 datasets 

(i.e., Lung, Dermatology, Mushroom, Zoo , and Soybean ) in a total of 

6 tested datasets. For the Voting dataset, the best ACC and ARI are 

obtained by IWFKM [15] algorithm. After the proposed method, the 

IWFKM [15] , SBC [59] , and Saha [17] methods have relatively good 

performance, respectively. 

Table 4 shows the average results for FKMAWCW and other 

compared algorithms. As shown in this table, FKMAWCW has the 

best results. In terms of ACC and ARI metrics, after FKMAWCW, 

Table 3 

Comparison of the proposed method with attributes-weighted methods. 

Datasets Saha [17] SBC [59] IWFKM [15] FKMAWCW 

Lung 0.58 0.63 0.597 0.6406 

0.14 0.216 0.232 0.2682 

Dermatology 0.635 0.793 0.695 0.7936 

0.305 0.545 0.391 0.7466 

Mushroom 0.644 0.798 0.825 0.8182 

0.238 0.387 0.376 0.4053 

Zoo 0.72 0.579 0.821 0.8218 

0.719 0.404 0.711 0.7806 

Voting 0.82 0.876 0.899 0.8922 

0.577 0.564 0.644 0.6137 

Soybean 0.893 0.936 0.894 1 

0.788 0.85 0.719 1 

the methods IWFKM [15] , SBC [59] , and Saha [17] have better out- 

comes, respectively. 

In some methods, such as Jia [49] , EWKM [25] , and Chan [45] , 

only some datasets have been tested. In Jia [49] , only the ACC cri- 

terion is reported. In this method, the ACC criteria for Soybean, 

Voting, and Zoo datasets are 1, 0.8786, and 0.7624, respectively, 

which is not an improvement over the proposed method. In Chan 

[45] , for the Mushroom, Soybean , and Voting datasets, the ACC cri- 

9 



A. Golzari Oskouei, M.A. Balafar and C. Motamed Chaos, Solitons and Fractals 153 (2021) 111494 

Fig. 5. Synthetic dataset with different percentages of noise. 

Table 4 

The average performance of FKMAWCW and other attributes- 

weighted methods. 

Metrics Saha [17] SBC [59] IWFKM [15] FKMAWCW 

ACC 0.7153 0.7687 0.7885 0.8277 

ARI 0.4612 0.4943 0.5122 0.6357 

teria are 0.6195, 0.7117, and 0.7894, respectively, and the ARI cri- 

teria are 0.0020, 0.5328, and 0.3638, respectively. The results of 

this method are also worse than the proposed method. In EWKM 

[25] , for the Mushroom, Soybean, and Voting datasets, the ACC cri- 

teria are 0.7905, 0.8972, and 0.8651, respectively, and the ARI crite- 

ria are 0.3586, 0.8054, and 0.5345, respectively. The results of this 

method, like the previous two methods, are also worse than the 

proposed method. 

4.6.2. Experiment 5: FKMAWCW algorithm vs. initialization 

sensitivity reduction methods 

In this section, the performance of FKMAWCW is compared 

with initialization sensitivity reduction methods. The performance 

of the different methods is shown in Table 5 . This table shows the 

ACC, PR , and RE rates from top to bottom for each dataset, respec- 

tively. The results of other methods have been quoted directly from 

the relevant publications. 

As shown in Table 5 , FKMAWCW has the best overall perfor- 

mance for all datasets except Mushroom and Zoo . In these two 

datasets, the method Khan [37] performs better than the FK- 

MAWCW method. Generally, the results show that FKMAWCW 

has a higher performance than other successful methods in this 

field. 

To compare the proposed FKMAWCW algorithm with other 

benchmark algorithms, Table 6 shows the result of the hypothesis 
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Table 5 

Comparison of Proposed Method with initialization sensitivity reduction methods. 

Datasets Khan [37] Cao [24] Mod-2 [38] Mod-3 [39] FKMAWCW 

Lung 0.5 0.5 0.5022 0.4922 0.6406 

0.6444 0.5584 0.5726 0.5515 0.7423 

0.5168 0.5014 0.4595 0.4512 0.6614 

Mushroom 0.8815 0.8754 0.7474 0.7682 0.8182 

0.8975 0. 9019 0.7586 0.7718 0.8566 

0.878 0.8709 0.7472 0.7686 0.8483 

Soybean 0.9574 1 0.907 0.8666 1 

0.9583 1 0.906 0.8552 1 

0.9705 1 0.9006 0.8567 1 

Voting 0.8506 0.8621 0.8764 0.8764 0.8922 

0.8484 0. 8571 0.8724 0.8724 0.9541 

0.8672 0.8755 0.8921 0.892 0.8387 

Zoo 0.8911 0.8812 0.7601 0.7524 0.8218 

0.7224 0.8702 0.6518 0.6193 0.7806 

0.7716 0.6714 0.6503 0.6494 0.7289 

Balance scale 0.4129 0.376 0.431 0.4323 0.5054 

0.3609 0.3282 0.4177 0.4238 0.4798 

0.3541 0.3228 0.3957 0.4009 0.4588 

Car evaluation 0.3576 0.4936 0.3725 0.3831 0.5795 

0.2415 0.3826 0.3407 0.344 0.2855 

0.2499 0.4875 0.365 0.3639 0.2609 

Chess 0.704 0.5663 0.5279 0.5385 0.5583 

0.5312 0.5796 0.5326 0.5425 0.6035 

0.554 0.5537 0.5296 0.5394 0.2465 

Dermatology 0.6175 0.5874 0.728 0.7404 0.7926 

0.6841 0.5604 0.6696 0.6589 0.7544 

0.6165 0.526 0.696 0.6943 0.7821 

Lymphography 0.5068 0.3514 0.5433 0.5341 0.6139 

0.4226 0.2698 0.475 0.4599 0.4221 

0.4451 0.2955 0.5438 0.5328 0.4408 

Nursery 0.2804 0.3651 0.3165 0.3128 0.3662 

0.2304 0.2978 0.2954 0.293 0.3078 

0.2044 0.2273 0.2501 0.2426 0.2501 

Table 6 

The result of the statistical test for the FKMAWCW algorithm and other state-of-the-art methods. 

Metrics Datasets FKMAWCW vs. Khan FKMAWCW vs. Cao FKMAWCW vs. Mod-2 FKMAWCW vs. Mod-3 

ACC Lung + + + + 

Mushroom - - + + 

Soybean + = + + 

Voting + + + + 

Zoo - - + + 

Balance scale + + + + 

Car evaluation + + + + 

Chess - - + + 

Dermatology + + + + 

Lymphography + + + + 

Nursery + + + + 

PR Lung + + + + 

Mushroom - - + + 

Soybean + = + + 

Voting + + + + 

Zoo + - + + 

Balance scale + + + + 

Car evaluation + - - - 

Chess + + + + 

Dermatology + + + + 

Lymphography - + - - 

Nursery + + + + 

RE Lung + + + + 

Mushroom - - + + 

Soybean + = + + 

Voting - - - - 

Zoo - + + + 

Balance scale + + + + 

Car evaluation + - - - 

Chess - - - - 

Dermatology + + + + 

Lymphography - + - - 

Nursery + + + + 

11 



A. Golzari Oskouei, M.A. Balafar and C. Motamed Chaos, Solitons and Fractals 153 (2021) 111494 

test on each dataset. Symbol “+ ” indicates that the proposed FK- 

MAWCW algorithm performs a better result. Similarly, the symbol 

“= ” indicates the equal result or no difference between the two 

algorithms, while “−” means the worse result of the FKMAWCW 

algorithm. According to the statistical result in Table 6 , the FK- 

MAWCW algorithm performs the worse result than those of all 

benchmark algorithms on the Voting and Chess datasets in term of 

the RE . Compared with the Khan [37] algorithm, the FKMAWCW 

algorithm yields the better results on 8 datasets in term of the 

ACC (i.e., Lung, Soybean, Voting, Balance scale, Car evaluation, Der- 

matology, Lymphography, and Nursery ), 9 datasets in term of the PR 

(i.e., Lung, Soybean, Voting, Zoo, Balance scale, Car evaluation, Chess, 

Fig. 6. Convergence speed of the objective function for different distance distances. (a) Hamming distance, (b) frequency probability-based distance, and (c) proposed distance 

function. 
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Fig. 6. Continued 

Dermatology, and Nursery ), and 6 datasets in term of the RE (i.e., 

Lung, Soybean, Balance scale, Car evaluation, Dermatology, and Nurs- 

ery ). Compared with the Cao [24] algorithm, the FKMAWCW al- 

gorithm performs better on 7 datasets in term of the ACC (i.e., 

Lung, Voting, Balance scale, Car evaluation, Dermatology, Lymphogra- 

phy, and Nursery ), 7 datasets in term of the PR (i.e., Lung, Voting, 

Balance scale, Chess, Dermatology, Lymphography, and Nursery ), and 

6 datasets in term of the RE (i.e., Lung, Zoo, Balance scale, Dermatol- 

ogy, Lymphography, and Nursery ). On the Soybean dataset, there is 

no difference in the performance of two algorithms. Regarding the 

Mod-2 [38] and Mod-3 [39] algorithms, the performance of the FK- 

MAWCW algorithm is significantly better since there are: better re- 

sults on all datasets in term of ACC , only 2 worse results on the Car 

evaluation and Lymphography in term of PR ; and 3 worse results on 

the Voting, Car evaluation , and Lymphography datasets in term of 

RE . In summary, the proposed FKMAWCW, which takes advantage 

of [28] and the new distance metric for categorical data, can obtain 

better results than some existing initialization sensitivity reduction 

clustering methods. 

In Table 7 , only 5 datasets are selected to compare with the 

benchmark algorithms because these are the mutual datasets that 

were used to conduct the experiment on both the proposed and 

the benchmark algorithms. As shown in Table 7 , the FKMAWCW 

has the best performance for Lung and Voting datasets. In the 

Mushroom and Zoo datasets, respectively, the Peng [27] and Jiang 

Table 7 

Comparison of Proposed Method with Wu, Jiang, and Peng methods. 

Datasets Wu [58] Jiang [23] Peng [27] FKMAWCW 

Lung 0.5 0.625 0.5262 0.6406 

0.5584 0.6833 0.6017 0.7423 

0.5014 0.5932 0.5938 0.6614 

Mushroom 0.8754 0.8941 0.9185 0.8182 

0. 9019 0.9138 0.9108 0.8566 

0.8709 0.8903 0.9078 0.8483 

Soybean 1 1 1 1 

1 1 1 1 

1 1 1 1 

Voting 0.8621 0.869 0.8671 0.8922 

0. 8571 0.863 0.8759 0.9541 

0.8755 0.8811 0.879 0.8387 

Zoo 0.8812 0.901 0.8933 0.8218 

0.8702 0.8906 0.8911 0.7806 

0.6714 0.8432 0.8378 0.7289 

[23] algorithms have a higher performance than the proposed al- 

gorithm. 

4.6.3. Experiment 6: effect of attribute and cluster weighting on 

real-world datasets 

To investigate the effect of the attribute and cluster weight- 

ing used in our approach on the final clustering quality, we com- 

13 
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Fig. 7. Effect of weighting on the quality of real-world datasets clustering. (a) ACC , (b) ARI , (c) PR and (d) RE. 

pare the proposed method once without attribute weighting and 

once without cluster weighting on 11 real-world datasets. In the 

case of without attribute weighting, we give the same weights to 

all attributes in each cluster. Also, in the case of without clus- 

ter weighting, we assign the same weights to all clusters. These 

weights are fixed during the algorithm run and are not updated. 

The compared results based on the ACC, ARI, PR, and RE are shown 

in Fig. 7 . 

As shown in Fig. 7 , by using both weighting techniques (pro- 

posed method), the ACC, ARI, PR , and RE rates of the proposed ap- 

proach, compared to the without attribute weighting mode, are 

improved by an average of 12%, 70%, 10%, and 27% on all testing 

datasets, respectively. For some datasets, such as Soybean and Zoo , 

the effect of the attribute weighting technique is more remarkable 

than other datasets. Also, compared to the without cluster weight- 

ing mode, the ACC, ARI, PR , and RE rates are improved by an aver- 

age of 12%, 23%, 7%, and 17% on all testing datasets, respectively. 

These results show that in the proposed method, the weighting of 

attributes has a more significant effect on the formation of opti- 

mal clusters than the weighting of clusters. Although the overall 

results are better, for some datasets such as Voting and Nursery , 

the performance of the proposed method is worse than the with- 

out cluster weighting mode (for PR and RE criteria). This is be- 

cause the used cluster weighting technique forms balance clusters 

in terms of SIWD. Therefore, this technique forms better clusters 

when there are natural groups with balanced SIWD in the dataset. 

So, this tactic may prove problematic when natural groups with 

different amounts of SIWD existing the dataset, a common scenario 

in practice, as it will hinder the clustering process from unveiling 

the true structure of the data. 

14 
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Fig. 7. Continued 

5. Conclusion 

Much research has been carried out to design a clustering algo- 

rithm with weighted attributes. Extensive research is also carried 

out to make the FKM algorithm less sensitive to initialization. Most 

of these investigations have provided a solution to each of the ex- 

isting challenges alone. Also, most of them use the Hamming sim- 

ilarity criterion, which is sensitive to noise. 

In this study, we presented a new method for clustering cat- 

egorical data based on the FKM clustering algorithm. During 

the clustering process, we used an attribute weighting scheme 

and a cluster weighting strategy to have better results. Used 

weights were calculated automatically and simultaneously dur- 

ing the learning process. Also, a new distance function based on 

the combination of the non-Euclidean distance and the frequency 

probability-based distance is used. Experimental results on large 

real-world datasets and a synthetic dataset showed that the pro- 

posed algorithm correctly assigns weight to each attribute due to 

its importance in each cluster, is not sensitive to the initialization 

and noise. 

As future direction, it is of interest to investigate the applica- 

tion of the FKMAWCW in the clustering mixed data. We are also 

interested in the automatic determination of the number of clus- 

ters during the clustering process. 
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Appendix 

Theorem 1. Let C, W , and Z be fixed , U is a strict local minimum of 

the F (U ) if and only if U is calculated via Eq. (3) . 

Proof. We use the Lagrangian multiplier technique to solve the fol- 

lowing unconstrained minimization problem (see Eq. (A.1) ). 

G ( U , �) = 

N ∑ 

n =1 

K ∑ 

k =1 

u nk 
α

M ∑ 

m =1 

w 

q 

km 

z p 
k 
d 2 ( x nm 

, c km 

) 

−
N ∑ 

n =1 

δn 

( 

K ∑ 

k =1 

u nk − 1 

) 

(A.1) 

where � = [ δ1 , δ2 , . . . , δN ] 
T is a vector containing the Lagrange 

multipliers corresponding to the constraints. 

The optimization problem in Eq. (A.1) can be decomposed into 

N independent sub-minimization problems (see Eq. (A.2) ). 

G n ( U , δn ) = 

K ∑ 

k =1 

u nk 
α

M ∑ 

m =1 

w 

q 

km 

z p 
k 
d 2 ( x nm 

, c km 

) − δn 

( 

K ∑ 

k =1 

u nk − 1 

) 

(A.2) 

for 1 ≤ n ≤ N

By setting the gradient of G n ( U , δn ) to zero with respect to δn 
and u nk , we obtain Eqs. (A.3 and A.4) 

∂ G n ( U , δn ) 

∂ δn 
= −

( 

K ∑ 

k =1 

u nk − 1 

) 

= 0 (A.3) 

∂ G n ( U , δn ) 

∂u nk 
= αu nk 

( α−1 ) z p 
k 

M ∑ 

m =1 

w 

q 
km 

d 2 ( x nm 

, c km 

) − δn = 0 (A.4) 

from (A.4) , we obtain Eq. (A.5) 

u nk = 

[
δn 

α z p 
k 

∑ M 

m =1 w 

q 

km 

d 2 ( x nm 

, c km 

) 

] 1 
α−1 

(A.5) 

Substituting (A.5) into (A.3) , we have Eq. (A.6) 

K ∑ 

l=1 

u nl = 

K ∑ 

l=1 

[
δn 

α z p 
l 

∑ M 

m =1 w 

q 

lm 

d 2 ( x nm 

, c lm 

) 

] 1 
α−1 

= 1 (A.6) 

It follows that Eq. (A.7) 

δn = 

α[∑ K 
l=1 

[ 
1 

z p 
l 

∑ M 
m =1 w q 

lm 
d 2 ( x nm , c lm ) 

] 1 
α−1 

]α−1 
(A.7) 

Substituting Eq. (A.7) into Eq. (A.5) , we obtain (3) . This com- 

pletes the proof. 

Secondly, we can prove that Eq. (3) is the sufficient condition 

for the minimum of F (U ) . 

Proof. If we show that the second partial derivative of Eq. (A.2) is 

positive, it can be proved that u nk defined by Eq. (3) is a local min- 

imum of Eq. (A.2) ; the derivative of Eq. (A.2) with respect to u nk is 

as follows Eq. (A.8) : 

∂ 

∂ u nk 

(
∂ G n ( U , δn ) 

∂ u nk 

)
= α( α − 1 ) u nk 

α−2 z p 
k 

M ∑ 

m =1 

w 

q 

km 

d 2 ( x nm 

, c km 

) 

(A.8) 

Since we know d 2 ( x nm 

, c km 

) ≥ 0 , w km 

≥ 0 , z k ≥ 0 , and α > 1 are 

positive. So the Eq. (A.8) is positive definite. F (U ) must have the 

minimum point, and Eq. (3) is sufficient for U to be a local min- 

imum of F (U ) . Then Theorem 1 can be validated. This completes 

the proof. �

Theorem 2. Let U , C, and Z be fixed , W is a strict local minimum of 

the F (W ) if and only if W is calculated via Eq. (7) . 

Proof. We use the Lagrangian multiplier technique to solve the fol- 

lowing unconstrained minimization problem (see Eq. (A.9) ). 

G ( W , �) = 

N ∑ 

n =1 

K ∑ 

k =1 

u nk 
α

M ∑ 

m =1 

w 

q 

km 

z p 
k 
d 2 ( x nm 

, c km 

) 

−
K ∑ 

k =1 

ψ k 

( 

M ∑ 

m =1 

w km 

− 1 

) 

(A.9) 

where � = [ ψ 1 , ψ 2 , . . . , ψ K ] 
T is a vector containing the Lagrange 

multipliers corresponding to the constraints. 

The optimization problem in Eq. (A.9) can be decomposed into 

K independent sub-minimization problems (see Eq. (A.10) ). 

G k ( W , ψ k ) = 

N ∑ 

n =1 

u nk 
α

M ∑ 

m =1 

w 

q 

km 

z p 
k 
d 2 ( x nm 

, c km 

) − ψ k 

( 

M ∑ 

m =1 

w km 

− 1 

) 

(A.10) 

for 1 ≤ k ≤ K

By setting the gradient of G k ( W , ψ k ) to zero with respect to 

ψ k and w km 

, we obtain Eqs. (A.11 and A.12) 

∂ G k ( W , ψ k ) 

∂ ψ k 

= −
( 

M ∑ 

m =1 

w km 

− 1 

) 

= 0 (A.11) 

∂ G k ( W , ψ k ) 

∂ w km 

= q w 

q −1 
ks 

z p 
k 

N ∑ 

n =1 

u nk 
α d 2 ( x ns , c ks ) − ψ k = 0 (A.12) 

from (A.12) , we obtain Eq. (A.13) 

w km 

= 

[
ψ k 

qz p 
k 

∑ N 
n =1 u nk 

α d 2 ( x nm 

, c km 

) 

] 1 
q −1 

(A.13) 

Substituting (A.13) into (A.11) , we have Eq. (A.14) 

M ∑ 

s =1 

w ks = 

M ∑ 

s =1 

[
ψ k 

qz p 
k 

∑ N 
n =1 u nk 

α d 2 ( x ns , c ks ) 

] 1 
q −1 

= 1 (A.14) 

It follows that Eq. (A.15) 

ψ k = 

q [∑ M 

s =1 

[ 
1 

z p 
k 

∑ N 
n =1 u nk 

α d 2 ( x ns , c ks ) 

] 1 
q −1 

]q −1 
(A.15) 

Substituting Eq. (A.15) into Eq. (A.13) , we obtain Eq. (7) . This 

completes the proof. 
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Secondly, we can prove that Eq. (7) is the sufficient condition 

for the minimum of F (W ) . 

Proof. If we show that the second partial derivative of Eq. (A.10) is 

positive, it can be proved that w km 

defined by Eq. (7) is a local 

minimum of Eq. (A.10) ; the derivative of Eq. (A.10) with respect to 

u nk is as follows Eq. (A.16) : 

∂ 

∂ w km 

(
∂ G k ( W , ψ k ) 

∂ w km 

)
= 

N ∑ 

n =1 

u nk 
αq ( q − 1 ) w 

q −2 

km 

z p 
k 
d 2 ( x nm 

, c km 

) . 

(A.16) 

Since we know d 2 ( x nm 

− c km 

) ≥ 0 , w km 

≥ 0 , z k ≥ 0 , q > 1 , and 

q < 0 are positive. So the Eq. (A.16) is positive definite. F (w) must 

have the minimum point, and Eq. (7) is sufficient for W to be a 

local minimum of F (W ) . Then Theorem 2 can be validated. This 

completes the proof. �

Theorem 3. Let U , C, and W be fixed , Z is a strict local minimum of 

the F (Z) if and only if Z is calculated via Eq. (8) . 

Proof. The proof of Theorem 3 is the same as the proof of 

Theorem 1 and 2 . �

Theorem 4. Let U , W , and Z be fixed , C is a strict local minimum of 

the F (C) if and only if C is calculated via Eq. (4) . 

To obtain the c km 

update formula, the objective function can be 

written as follows Eq. (A.17) : 

F ( U , C, W , Z ) = 

N ∑ 

n =1 

K ∑ 

k =1 

u nk 
α

M ∑ 

m =1 

w 

q 

km 

z p 
k 
d 2 ( x nm 

, c km 

) 

= 

N ∑ 

n =1 

K ∑ 

k =1 

u nk 
α ˆ d 2 ( x nm 

, c km 

) , (A.17) 

By incorporating w 

q 

km 

and z 
p 

k 
into the equation of computing dis- 

tance ˆ d 2 ( x nm 

, c km 

) , the proposed objective function becomes the ob- 

jective function of the FKM algorithm [13] . In the proposed algorithm 

and FKM, the ˆ d 2 ( x nm 

, c km 

) and u nk 
α are in the range [0, 1]. Therefore, 

the function for updating c km 

and proof of optimization in FKM can 

also be adopted for the proposed method . 
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