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Abstract
In existing deep clustering methods, it is assumed that all generated representations are equally important during the clustering
procedure. However, if the model can’t learn proper cluster-oriented representations, all generated representations may not be
suitable for clustering. In this case, some important representations need to be more effective than the other representations in
forming optimal clusters. The existing deep clusteringmethods do not support this idea. Also, inmost methods, Kullback–Leibler
Divergence (KLD) loss function is used. KLD does not preserve global data structure. In this paper, an efficient joint deep
clustering framework, termed EDCWRN, is introduced to learn representations and cluster labels, simultaneously. To overcome
the mentioned problems, in EDCWRN, an automatic local representation weighting strategy is applied to weight the represen-
tations of each cluster properly. Moreover, the samples and their neighbors are involved in the learning representations procedure
to generate better representation. Also, a new efficient formulation for cluster assignments is proposed. Using this formulation,
global and local data structure is preserved simultaneously. Experiments show that the proposed model is more efficient than
other state-of-the-art methods. The implementation-source code- of EDCWRN is made publicly available at https://github.com/
Amin-Golzari-Oskouei/EDCWRN.
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1 Introduction

Clustering is an important data analysis technique used to get
an intuition about the data structure [1–5]. Clustering is group-
ing a set of samples into several partitions (clusters) [6, 7]. The
goal of clustering is to decrease inter-cluster similarity and
increase intra-cluster similarity [6, 8–10]. Various classic clus-
tering algorithms have been introduced, in recent years. The
fuzzy c-means [12] and k-means [12] clustering algorithms

are the most popular clustering algorithms among the classic
clustering methods. Some other extensions of these algo-
rithms have also been introduced in [3, 13, 14].

Traditional clustering methods (such as fuzzy c-means [12]
and k-means [12]) usually do not form optimal clusters for
high dimension datasets owing to the inefficiency related to
the similarity criteria used in these methods. Such methods
also have high computational complexity for large-scale
datasets. Therefore, dimensionality reduction techniques
(such as principal component analysis (PCA) [15]) are used
to map raw data into a low-dimensional feature space.
However, a highly complex latent structure of data still chal-
lenges the usefulness of current clustering methods [16].

Thanks to deep learning development, deep neural net-
works (DNNs) can be implemented to transform data into
more clustering-friendly representations as they have an inher-
ent property of highly non-linear transformation [17–19].
Clustering methods that utilize deep learning approaches are
called deep clustering [20]. Most deep clustering methods
consist of two phases. The first phase is learning new repre-
sentations of raw data using deep learning models, and the
second phase is the clustering of this data in the new embed-
ded space. In the second phase, both classical clustering
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techniques and deep learning models can be used to identify
clusters. Deep clustering methods have recently attracted re-
searchers thanks to some key advantages that they have [21];
1) generated representations of data are in low dimensional
space and have better information for clustering (clustering-
friendly representations). As a result, clustering in this new
embedded space is much faster and better than in the raw data
space, and 2) for clustering complex data (such as images or
text), using new representations significantly improves clus-
tering performance.

Problem statement In existing deep clustering methods, it is
assumed that all generated representations are equally impor-
tant during the clustering procedure. However, if the model
can’t learn proper representations, all generated representa-
tions may not be suitable for clustering. Therefore, some gen-
erated representations are irrelevant to the target problem or
less important than others. However, most deep clustering
methods do not consider the importance of the generated rep-
resentations, and as a result, in some applications, their per-
formances fall significantly.

To demonstrate the importance of the generated represen-
tations in each cluster, we illustrate the representations gener-
ated by the IDEC [22] method on the MNIST dataset in dif-
ferent 2D subspaces. Figure 1 shows the result of this visual-
ization. Note that for simplicity, this visualization is only il-
lustrated on three classes and four generated features. From

this figure, it is understood that Cluster2 is formed chiefly
based on Feature1 and Feature4 (see Fig. 1c), and Cluster1
is mainly formed based on Feature3 and Feature4 (see
Fig. 1b). This means that the first and the fourth features
in Cluster2 are more important than the second and the
third features (see Fig. 1d). Similarly, the third and the
fourth features in Cluster1 are more important than the
first and the second features (see Fig. 1a).

In addition, most deep clusteringmethods, such as [22–24],
use the Kullback–Leibler Divergence (KLD) loss function to
train the model in the clustering step, and the Student’s t-
distribution is used to predict the probability of assigning a
sample to a cluster (soft assignment). KLD does not preserve
global data structure, which means only within-cluster dis-
tances are significant, while between-clusters similarities are
not guaranteed. Therefore, it is generally agreed that clustering
by the KLD loss function is not a very good idea. Also, be-
cause the Student’s t-distribution is not scaled and should be
normalized, using the Student’s t-distribution increases model
training time.

To better understand the mentioned problem, we use a one-
dimensional dataset with 100 samples (0 to 99) and two clus-
ters (centers 25 and 75). By illustrating the KLD loss function
with the Student’s t-distribution (see Fig. 2), it is observed that
for samples close to the centers (such as samples 20 to 30 and
70 to 80), the loss function behaves correctly. By moving
away from the center of the clusters, the loss increases.

(a) (b)

(c) (d)

Fig. 1 Visualization of the
representations generated by the
IDEC [22] method on theMNIST
dataset in different 2D subspaces
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However, for samples far from the centers (such as samples 40
to 60), the loss function does not behave correctly. By moving
away from the centers of the clusters, the loss either increases
or decreases. While we expected that by moving away from
the centers of the clusters, the loss increases and reaches its
maximum value for the 50th sample. Therefore, KLD does not
preserve global data structure, meaning that only within-
cluster distances are meaningful, while between clusters sim-
ilarities are not guaranteed.

Method To tackle the problems of deep clustering methods
(i.e., equal importance to generated representations, KLD loss
function, and Student’s t-distribution problems), in the pro-
posed deep clustering framework, we use an automatic local
representation weighting strategy to weight the representa-
tions of each cluster properly. Representation weighting is
conducted locally so that depending on their importance in
the clusters, the representations would have different weights,
increasing the quality of clustering. Moreover, we utilize an
efficient deep model to learn representations and cluster labels
jointly. In the proposed deep clustering framework, the sam-
ples and their neighbors are used in the learning representa-
tions procedure to generate cluster-oriented meaningful repre-
sentation. The advantage of utilizing data neighbors is that for
similar samples (in the same cluster), the representations gen-
erated in the embedded space are close to each other. Also, in
the proposed model, instead of using the KLD loss function,
we use cross-entropy. Using the cross-entropy loss function,
global and local data structure is preserved simultaneously,
meaning that intra-cluster and inter-cluster distances in
the generation of new representations are considered. In
the proposed method, the formulation for cluster assign-
ments (cluster labels) is new and different from the
Student’s t-distribution, which has significantly im-
proved the results.

The graphical abstract of the proposed method is shown in
Fig. 3. As shown in this figure, the proposed method consists
of two steps: pre-training and clustering. In the pre-training

step, the autoencoder model is trained, then this model is used
in the clustering step. In the clustering step, the sample and its
k nearest neighbors are used to train the model. The main aim
is to learn similar representations for samples belonging to
the same cluster. The output of the encoder module is fed
to the clustering layer to predict clusters. In this layer, the
local features weighting technique is used to identify
more important features. This weighting helps to form
optimal clusters.

Results Extensive experiments conducted on six standard
datasets indicate all used techniques somehow positively af-
fect the final result. The advantage of these techniques is that
the algorithm achieves optimal clusters by performing the fea-
ture weighting along with the proposed formulation and
neighboring concurrently. Feature weighting helps select
more important features for clustering, the neighborhood
technique helps to learn similar representations for sam-
ples belonging to the same cluster, and the cross-entropy
loss function with the proposed distribution helps preserve
the inter-cluster distance (global distance). Representation
weighting, proposed formulation, and applied neighboring
techniques have the most positive effect on the final re-
sults, respectively. Comparing the results to the existing
state-of-the-art deep clustering methods shows significant
performance.

Contribution This research makes the contributions as
follows:

1) Representation weighting is conducted locally depending
on their importance in the clusters; the representations in
each cluster have different weights, hence increasing the
quality of clustering;

2) An efficient deep clustering framework is designed to
learn representations and cluster labels jointly. Also, the
samples and their neighbors are used in the learning rep-
resentations procure to generate cluster-oriented mean-
ingful representation;

3) Global and local data structure is preserved, meaning that
intra-cluster and inter-cluster distances in the generation
of new representations are considered;

4) The formulation for cluster assignments (cluster labels) is
new and different from the other methods, which has
significantly improved the results.

The remainder of the paper is organized as follows: In
Section 2, some existing deep clustering methods are re-
viewed; in Section 3, a brief overview of the IDEC [22] meth-
od is presented, which is the basis of this work; in Section 4,
the proposed deep clustering model (EDCWRN) is described
in detail; Section 5 presents the experiments; finally, Section 6
makes conclusion and ideas for future work.

Fig. 2 KLD loss function behavior
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2 Related work

There are two approaches to clustering data based on deep
learning. The first approach can use extracted features from
a deep pre-trained network. In this approach, the extracted
features are usually not appropriate for unsupervised tasks.
In fact, the usage of an already-trained deep network (by la-
beled data) for some unsupervised purposes lacks knowledge
of features required for partitioning unknown data [21]. The
second approach has a clustering method embedded in a deep
learning model. This connection allows the deep learning
model to learn clustering-friendly representations.

Somemodels are trained by an auxiliary target distribution.
Using auxiliary target distribution during network training
improves clustering accuracy. Deep Embedded Clustering
(DEC) [27] is the first algorithm to use auxiliary target

distribution. In this algorithm, a fully connected deep
autoencoder model is trained by the MSE (Mean Square
Error) loss function. At the end of the training, the network
decoder is removed, and a new layer called the clustering layer
is added to the top of the network. The new network is trained
with the KLD loss function, which is calculated between pre-
dicted cluster assignment probability and auxiliary target dis-
tribution. For designing the auxiliary distribution, a function
of the current model assignment distribution and the frequen-
cy per cluster is used by the authors. In DEC, the Student’s t-
distribution is used to predict the probability of assigning a
sample to a cluster (soft assignment).

Some other extensions of DEC methods have been intro-
duced. DEC with data augmentation (DEC-DA) [29] is a new
DEC-based method that uses data augmentation during the
training autoencoder model. Discriminatively Boosted

Fig. 3 Graphical abstract of the proposed method
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Clustering (DBC) [27] is another clustering method with the
same framework as DEC, except that it uses CNN layers in-
stead of fully connected layers. Because DBC uses CNN
layers, it works much better than DEC for clustering image
datasets. IDEC [22] is another DEC-based approach that tries
to preserve the local data structure. This algorithm uses MSE
and KLD loss functions simultaneously to train the proposed
network. As a result, it generates better representations for
clustering. We have chosen this algorithm as the primary base
for comparing our proposed framework. In Section 3, the
IDEC method, i.e., the basis of the suggested method
(EDCWRN), is introduced.

Deep Multi-Manifold Clustering (DMC) [31] is a deep
learning-based multi-manifold clustering approach that pro-
poses a loss function based on three elements. The first ele-
ment is the clustering loss which makes the data representa-
tions cluster friendly. The second term in the loss is the
autoencoder loss which helps to obtain new data representa-
tions, and finally, a locally preserving loss which makes the
representations useful and meaningful.

Existing DEC-based methods use pseudo-labels (auxiliary
target distribution) to train the network in the clustering phase.
However, the estimation of these pseudo-labels may not be
correct in the early epochs of model learning, and the network
may not be appropriately optimized. To address this issue, an
improved deep convolutional embedded clustering algorithm
using reliable samples (IDCEC) was proposed in [29]. In the
clustering phase of IDCEC, reliable samples were selected
and passed to the convolutional neural network for training
to get better clustering results.

Dynamic Autoencoder (DynAE) [30] is a deep learning-
based clustering approach that overcomes a clustering recon-
struction trade-off by gradually and smoothly eliminating the
reconstruction objective function in favor of a construction
one. Although this method performs better than other similar
algorithms, the network training time is longer than other sim-
ilar methods and suffers from parameter dependence. This
group of researchers has proposed other similar methods in
[23].

Clustering can be performed by utilizing pairwise con-
straints [31] as well. The main idea of this paper is that similar
pairs should have similar representations in the embedding
space while different pairs should have different distant em-
beddings. The authors have used K-Nearest Neighbor (KNN)
to obtain pairwise relations. Maximizing inter-cluster variance
and minimizing intra-cluster variance for image datasets have
been studied in [21]. In this paper, for each image, one related
image (positive sample) and one non-related (negative sam-
ple) image are selected. The goal is to make the representation
of the input image close enough to the positive sample while it
is well separated from the negative one. A positive sample is
obtained by the data augmentation technique, and the negative
sample is randomly selected from the entire dataset.

Therefore, the negative sample may not be determined cor-
rectly. Recently, a text clustering method was proposed in
[24]. In this method, neighbors preserve cluster locality [24].
In [32], a new constrained document clustering was proposed.
In this method, some of the informative data pairs are selected
during an iterative process.

In [33], the authors proposed an efficient deep image clus-
tering model using nearest neighbor contrastive, which fuses
contrastive learning with neighbor relation mining. During
training, contrastive learning and neighbor relation mining
are updated alternately, where the former is conducted in the
backward pass, while the latter is employed in the forward
pass. In this framework, the data augmentation approach is
used for generating nearest neighbors manually.

In [34], the authors introduced a new deep framework,
called DCV (deep clustering and visualization). The DCV
model consists of two non-linear dimensionality reduction
(NLDR) transformations: 1) from the input data to the embed-
ded feature space for clustering and 2) from the embedded
feature space to the final 2-D space for visualization. The first
NLDR transformation is optimized by Clustering Loss,
allowing arbitrary corruption of the geometric structure for
better clustering. In contrast, the secondNLDR transformation
is optimized by one Geometry-Preserving Loss to recover the
corrupted geometry for better visualization.

In the field of deep clustering, new advanced methods have
been proposed that use graph theory and graph convolutional
network (GCN) for data clustering. In [35], a robust clustering
model based on attention mechanism and graph convolutional
network (GCN) was proposed. This model used graph atten-
tion network and GCN to learn the feature information of
nodes and the topological structure information of graphs,
respectively. Then the representation results of the above
two learning modules were interactively fused by the interlay-
er transfer operator. Finally, the model was trained end-to-end
using a self-supervised training module to optimize the clus-
tering results. In [36], an end-to-end self-supervised graph
convolutional network for multi-view clustering was pro-
posed. This model constructs a new view descriptor for
graph-structured data by mapping the raw node content into
the complex space via Euler transformation, which not only
suppresses outliers but also reveals non-linear patterns embed-
ded in data. Meanwhile, this model uses the clustering labels
to guide the learning of the latent representation and coeffi-
cient matrix, and the latter, in turn, is used to conduct the
subsequent node clustering. In this way, clustering and repre-
sentation learning are seamlessly connected to achieve better
clustering results.

In [37], the authors introduced an efficient model for clus-
tering face images using a residual graph convolutional net-
work, which contains more hidden layers. For each node, the
k-Nearest Neighbor (kNN) algorithm was used to construct its
sub-graphs. Then the idea of ResNet into GCNs and construct
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RGCNwas applied to learn the possibility of linkage between
two nodes.

TADW-SC [6] and ASC [38] are spectral clustering
methods that construct affinity matrices. TADW-SC generates
node embedding vectors and builds an affinity matrix by cal-
culating the similarity between each pair of nodes according to
the embedding vectors. ASC used biased random walks con-
sidering network topology and attributes to calculate the sim-
ilarity between each pair of nodes for the construction of an
affinity matrix. CSADW [39] calculates the topological and
attributed similarity between nodes to construct a weighted
adjacency matrix and then performs biased random walks ac-
cording to the matrix.

3 Preliminaries

The improved deep embedded clustering (IDEC) method [22]
is a simple and effective clustering method. In this section, the
IDEC method is introduced. This algorithm develops a joint
architecture for learning representations and cluster labels.
Figure 4 shows the IDEC architecture.

As shown in Fig. 4, IDEC is trained simultaneously with
two loss functions: a representation loss and a clustering loss.
Eq. (1) shows the used loss function in this method. This loss
combines a clustering loss (Lc ) and a representation loss (Lr

). λ is a coefficient, controlling the degree of distorting em-
bedded space.

L ¼ Lr þ λ Lc ð1Þ

The reconstruction loss function (Lr ) in this algorithm is
defined in Eq. (2).

Lr χ;η; θð Þ ¼ ∑
x∈χ

δI x; gη∘ f θ xð Þ� � ð2Þ

Where χ is a set of input samples, θ and η are respectively
the encoder and decoder parameters, fθ(x) is the embedding of
the data (χ), and gη ∘ fθ(x) is the reconstructed version of the

data obtained from the output layer, δI is a dissimilarity mea-
sure (e.g., Euclidean, cosine, etc.).

The clustering loss function (Lc ) in this algorithm (Eq. (3))
is defined as KLD between soft computed labels (Q), which is
measured by Student’s t-distribution and the target distribu-
tion (P) obtained from Q.

Lc ¼ KL
�
Pj Qj Þ ¼ ∑

i
∑
j
pij log

qij
pij

 !
ð3Þ

In Eq. (3), pij and qij are defined in Eqs. (4) and (5), respec-
tively.

qij ¼
1þ f θ xið Þ−r j

�� ��2� �−1

∑ j 1þ f θ xið Þ−r j
�� ��2� �−1 ð4Þ

pij ¼
qij

2=∑iqij

∑ j qij2=∑iqij
� � ð5Þ

Where xi is the i-th input and rj is the j-th cluster represen-
tative. qij is defined as the similarity between the i-th embed-
ded input and j-th cluster representative.

In IDEC, the labels can be obtained from the following
formula:

si ¼ arg jmax qi; j ð6Þ

4 Proposed approach: EDCWRN

4.1 Overview

Extracting meaningful cluster-oriented representations is fun-
damental in deep clustering. By designing the suitable archi-
tecture, better representations are extracted, and optimal clus-
ters are formed. To this end, we propose an efficient deep
model to learn representations and cluster representatives
jointly. Figure 5 shows the architecture of the proposed
EDCWRN method. As shown in this figure, the input of this
model is a sample and its k nearest neighbors. At the end of
training each batch, k nearest neighbors of each sample are
calculated. The goal of using neighbors is to learn similar
representations for samples within the same cluster. More de-
tails on how to calculate and select neighbors are discussed in
Subsection 4.3. In the proposed architecture, the encoder mod-
ule is responsible for extracting useful representations for
clustering, and the decoder module uses these extracted rep-
resentations to calculate cluster labels and reconstruct the in-
put. Observe that in the encoder module, the sample and its
neighbors are passed into two separate networks.
Representations learned from a sample, and its neighbors areFig. 4 The architecture of IDEC
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summed and fed as input to the decoder module. The main
aim of the encoder module is to learn similar representations
for samples belonging to the same cluster. This aim is
achieved by involving the neighbors in the network training
process. As a result, proper embedded feature space is learned
for clustering. The decoder module uses the new embedded
feature space to reconstruct the input and estimate the clusters.
The output of the encoder is fed separately to the fully con-
nected layers (to reconstruct the input) and the clustering layer
(to predict clusters). The fully connected layers are the same as
the fully connected layers of the encoder module, except that
the order of the layers is reversed.

In the proposed architecture, the i-th sample (xi) passes
through fully connected layers, and new representations for
the input sample (vxi ) are generated (Eq. (7)).

vxi ¼ σ Wx xi þ bxð Þ ð7Þ
whereWx and bx are the layer parameters (weights and biases)
learned during network training, and σ represents the RELU
activation function.

Neighbors of the i-th sample (zi) also pass through fully
connected layers and a max layer, and finally, new represen-
tations (vzi ) are generated for data neighbors (Eq. (8)).

vzi ¼ max
i¼1;…;k

σ Wz zið Þ þ bzð Þð Þ ð8Þ

where,Wz and bz are the layer parameters (weights and biases)
learned during network training, and σ represents the RELU
activation function. The weights Wz and bz are shared among
the K neighbors (z1, z2, z3, …, zk). In other words, the weight
sharing technique is used.

Representations generated from a sample (vxi ) and its
neighbors (vzi ) are summed and given as input to the decoder
module (Eq. (9)).

f θ xið Þ ¼ vxi þ vzi ð9Þ
where, fθ(xi) is the embedding of the i-th sample.

fθ(xi) is passed separately from the fully connected layers
and the clustering layer. The fully connected layers are the

same as the fully connected layers of the encoder module,
except that the order of the layers is reversed (Eq. (10)).

gη∘ f θ xið Þ ¼ σ Wx f θ xið Þ þ bxð Þ ð10Þ

In Eq. (10), gη ∘ fθ(xi) is reconstructed from the i-th sample
obtained from the output layer.

fθ(xi) is also passed to the clustering layer. The weights of
this layer are the centers of the clusters, and the output of this
layer determines the probability that the i-th sample belongs to
the j-th cluster (predicted cluster labels). Eq. (11) shows how
to calculate the cluster labels.

qij ¼ 1þ a ∑
M

m¼1
wjm f θ ximð Þ−rjm
� �2� �b

 !−1

ð11Þ

where a and b are user-defined positive values,M indicates the
number of generated representations (extracted features), wkm

indicates the weight of the m-th feature in the k-th cluster (for
further details about wjm refer to Subsection 4.2), fθ(xim) indi-
cates the m-th feature in the i-th sample, rjm indicates the m-th
feature in the j-th cluster. Unlike the Student’s t-distribution
(Eq. (2)), the output of this equation is in the range [0,1] and
does not need to be normalized.

In designing Eq. (11), inspired by [47], we use the family of
curves (1 + a y2b)−1 for modeling cluster predictions. Our
proposed equation is not exactly the t-student distribution
used in the DEC-based methods, but it is very similar. In the
proposed equation (Eq. (11)), unlike the t-student distribution
(Eq. (4)), no normalization is applied. Although eliminating
the normalization step is an arguably small step for the pro-
posed method, it has a dramatic effect on the performance.
This is because summation or integration is a computationally
expensive step.

The EDCWRN loss function, like IDEC [22], is a combi-
nation of reconstruction loss (Lr) and clustering loss (Lc).
Eq. (12) shows the loss function of the proposed method.

L ¼ Lr þ λ Lc ð12Þ

Fig. 5 EDCWRN architecture
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where λ is a coefficient that controls the degree of distorting
embedded space.

The reconstruction loss function (Lr ) in the proposedmod-
el is the same as the loss function used in IDEC, which is
calculated by Eq. (2). In the proposed algorithm, we use
Cross-entropy for the clustering loss function, which is calcu-
lated between proposed soft computed labels (Eq. (11)) and
the target distribution (Eq. (5)). Eq. (13) shows the clustering
loss function.

Lc ¼ ∑
i
∑
j
pij log qij

� �
ð13Þ

The proposed EDCWRN algorithm’s pseudo-code is given
in Fig. 6. As shown in this algorithm, the target distribution P
serves as a “ground-truth” soft label but depends on the pre-
dicted soft label. Therefore, to avoid instability, P should not
be updated at each iteration (one update for autoencoder’s
weights using a mini-batch of samples is called an iteration)
using only a batch of data. In practice, we update target dis-
tribution using all embedded points every T iteration. See Eqs.
(5) and (11) for the update rules. When updating target distri-
bution, the label assigned to xi is obtained by Eq. (14).

si ¼ arg jmax qi; j ð14Þ

Where qi, j is computed by Eq. (11).Wewill stop training if
label assignment change (in percentage) between two consec-
utive updates for target distribution is less than a threshold ε.
The optimization proof of EDCWRN is given in the Appendix
1.

In each iteration, a batch of data is selected according to the
batch size (Step 9). This batch of data is used to update can-
didate neighbors (step 10) and network parameters (step 11).
In each iteration, the candidate neighbors of each sample in
the embedded space (encoder output) are calculated and up-
dated. The nearest neighbor approach is used to calculate can-
didate neighbors on the batch of data.

4.2 Representation weighting

In existing deep clustering methods, some generated represen-
tations are either less important than others or irrelevant to the
target problem. However, most deep clustering methods do
not consider the importance of the generated representations,
and consequently, their performances fall significantly in
some applications.

To cope with this problem, we use an automatic local rep-
resentation weighting strategy to weight the representations of
each cluster properly. Representation weighting is performed
locally in a way that the extracted representations depending
on their importance in the clusters have different weights,
hence increasing the quality of clustering. In the proposed
local representation weighting strategy, the principle for
weighting extracted representations in each cluster that should
be taken into account is as follows: a larger weight is assigned
to a feature with a smaller variance, and a smaller weight to a
feature having a larger variance. According to this principle,
the weights of each feature in each cluster are updated simul-
taneously during network training via Eq. (15).

Fig. 6 The pseudo-code of the
EDCWRN algorithm
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wjm ¼ 1

∑M
s¼1

∑N
i¼1qij

α f θ ximð Þ−rjm
� �2

∑N
i¼1qijα f θ xisð Þ−rjs

� �2
ð15Þ

where N represents the number of samples in a batch,M refers
to the number of features (generated representations), wkm

indicates the weight of the m-th feature in the k-th cluster,
fθ(xim) indicates the m-th feature in the i-th sample, and rjm
indicates the m-th feature in the j-th cluster. α is the
fuzzification coefficient (α > 1). For wjm the following con-
straint is considered (Eq. (16)):

wj;m∈ 0; 1½ �:∑M
m¼1wj;m ¼ 1:1≤ j≤K:1≤m≤M ; ð16Þ

where K is the number of clusters.

4.3 Candidate neighbors

In EDCWRN, we select candidate neighbors using a nearest
neighbor approach. We use the embedding feature space (the
encoder output) to compute the distance between each pair of
samples. In each batch, the candidate neighbors of each sam-
ple are calculated. Input samples and their neighbors enter the
network. During network training and reaching the final
epochs, the better candidate neighbors are selected. The num-
ber of neighbors is specified by the user.

5 Experiments

In this section, the results of the experiments are provided,
which were carried out to evaluate the proposed method. At
first, the datasets which were used in our experiments are
presented. Then, in an attempt to demonstrate the effective-
ness of our solutions, the results of our extensive experiments
are presented. Lastly, the performance of this proposed meth-
od is assessed on testing datasets and compared with the fol-
lowing state-of-the-art methods:

& deep adversarial subspace clustering (DASC) [48],
& deep embedded clustering (DEC) [27],
& variational deep embedding (VaDE) [42],
& joint unsupervised learning (JULE) [50],
& deep clustering with convolutional autoencoders (DCEC)

[53]
& deep clustering for unsupervised learning of visual fea-

tures (DeepCluster) [45]
& deep embedded regularized clustering (DEPICT) [46],
& improved deep embedded clustering with locality preser-

vation (IDEC) [22],
& deep spectral clustering using a dual autoencoder network

(DSCDAN) [47].

& discriminatively boosted clustering (DBC) [27]
& deep k –Means (DKM) [48]
& semi-supervised deep embedded clustering (SDEC) [49]
& adversarial deep embedded clustering (ADEC) [30]
& deep clustering with a dynamic autoencoder (DynAE)

[23]
& large-scale multi-view subspace clustering (LMVSC) [50]
& scalable deep k-subspace clustering (SDKSC) [41]
& deep embedding clustering based on contractive

autoencoder (DECCA) [24],
& deep clustering network (DCN) [43],
& pseudo-supervised deep subspace clustering (PSSC) [53]

similar to the settings in IDEC, the encoder module is a set of
dense layers (fully connected layers) with dimensions d _
500 _ 500 _ 2000 _ 10, where d is the dimension of input
data, and the decoder module is the same as the fully connect-
ed layers of the encoder module, except that the order of the
layers is reversed (10 _ 2000 _ 500 _ 500 _ d). The entire
internal layers are activated using the ReLU nonlinearity func-
tion. The autoencoder network pre-training is adjusted as [27].
For more details, refer to the paper. The clustering loss coef-
ficient λ is set to 0.1, and the number of neighbors is set to 2.
Parameter batch size, the update intervals T, and the conver-
gence threshold ε are set to 256, 140, and 0.1%, respectively.
SGD (Stochastic Gradient Descent) optimizer with learning
0.1 and momentum 0.9 is used in the EDCWRN framework.
The implementation- source code- of EDCWRN is made pub-
licly accessible at https://github.com/Amin-Golzari-Oskouei/
EDCWRN.

In the pertaining and training phases, we use data augmen-
tation approaches. We use five transformations that are ran-
domly applied to samples. The details of these transformations
are summarized in Table 1.

5.1 Dataset

To closely investigate the effects of the strategies presented in
our method and compare the proposed method with other
methods, we use six benchmark datasets. The statistic of the
datasets is given in Table 2.

& Mnist: This dataset consists of 28 by 28 Gy-scale images
of 70,000 handwritten digits.

& Fashion-Mnist: This dataset consists of 28 by 28 Gy-
scale images of 10 fashion categories.

Table 1 Transformations

Width shift Height shift Rotation Zoom

Range 0.1 0.1 10 0.1
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& Mnist-Test: This dataset is a test set of the Mnist dataset,
containing 28 by 28 Gy-scale images of 10,000 handwrit-
ten digits.

& USPS: This dataset is a handwritten digit from the USPS
postal service. It contains 9298 samples of 16 by 16
images.

& Reuters-10 k: Following the IDEC model [22], we ran-
domly sampled a subset of 10,000 examples and comput-
ed TFIDF features on the 2000 most frequent words from
the REUTERS dataset. We used four root categories: cor-
porate/industrial, government/social, markets, and eco-
nomics as labels.

& 20NG: This dataset consists of 18,846 text documents.
These documents are partitioned into 20 different groups
according to their topics. We compute TFIDF features on
the 2000 most frequent words from the 20NG dataset.

5.2 Evaluation criteria

In our experiments, the clustering performances of the differ-
ent methods are evaluated concerning two standard measures:
Normalized Mutual Information (NMI) and Accuracy (ACC).

NMI NMI is an information-theoretic measure based on the
mutual information of the ground-truth classes and the clusters
obtained from a clustering algorithm [54], defined as Eq. (17):

NMI R;Qð Þ ¼
∑I

i¼1∑
J
j¼1P i; jð Þ log P i; jð Þ

P ið Þ P jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Rð ÞH Qð Þp ; ð17Þ

where R and Q are two partitions belonging to the input
dataset and include I and J clusters, respectively. P(i) is the
probability that a randomly selected sample from the input
data assigns to a cluster Ri, P(i, j) is the probability referring
to a sample that belongs to both clusters Ri and Qi. H(R) is the
entropy relating to all the probabilities P(i) (1 ≤ i ≤ I) in
partition R.

Accuracy Different from NMI, ACC measures the proportion
of data points for which the obtained clusters can be

correctly mapped to ground-truth classes [55], calculated
as Eq. (18):

ACC ¼ ∑K
k¼1dk
N

; ð18Þ

where dk indicates the number of data points that are
correctly assigned in the k-th cluster, and N indicates
the number of all samples.

5.3 Experiment 1: The effect of representation
weighting, neighboring, and proposed formulation

To study the effect of representation weighting, neighboring,
and proposed formulation implemented in our method on the
final results, we evaluate the performance of the proposed
model using these techniques and without them. Table 3 pre-
sents the Accuracy and NMI rates from top to bottom for each
dataset, respectively. In the Representation weighting and
Neighboring columns, the symbol “✓” indicates the use of
that technique, and the symbol “✘“indicates that the technique
is not used. Also, in the Formulation column, the word “pro-
posed” is used if the formulation is based on the proposed
equations (Eqs. (11) and (13)), and the word “IDEC” is used
if the formulation is based on the proposed equations in IDEC
(Eqs. (3) and (4)).

Discussion on representation weightingAs shown in Table 3,
the performance of the proposed approach with the represen-
tation weighting technique is better than without the
weighting mode. When the local representation weighting is
used, the ACC and NMI rates of the proposed approach im-
prove by an average of 0.58% and 0.95% on all testing
datasets, respectively. The effect of the representation
weighting technique is significant in some datasets, such as
Fashion-Mnist, Mnist, 20NG, and Reuters-10 k.

In the Fashion-Mnist dataset, the ACC and NMI rates of the
proposed approach with representation weighting modes are
improved by an average of 1.58% and 1.68%, respectively, as
opposed to without representation weighing modes. Also, in
the Mnist dataset, the ACC and NMI rates of the proposed
approach with representation weighting modes, as opposed

Table 2 Datasets
Datasets No. of Samples No. of Classes No. of Dimensions Type

Mnist 70,000 10 784 Image

Fashion-Mnist 70,000 10 784 Image

Mnist-Test 10,000 10 784 Image

USPS 9298 10 256 Image

Reuters-10 k 10,000 4 2000 Text

20NG 18,846 20 2000 Text
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to without representation weighting modes, are improved by
an average of 1.04% and 2.20%, respectively. This indicates
that in these datasets, the new representation space is not suf-
ficiently suitable for clustering. In contrast, in some datasets,
such as Mnist-Test, the representation weighting technique
does not have a significant effect on results. When the data
in the new embedded space is suitable for clustering, the effect
of representation weighting is reduced. For a better under-
standing, the weights obtained for each dataset are illustrated
in Fig. 7. As shown in this figure, in datasets such as
USPS and Mnist-test, the weights obtained in each cluster
are approximately balanced. In contrast, for Mnist and
Fashion-Mnist datasets, these weights are unbalanced. In
the latter case, the weighting of representations has a re-
markable impact on optimal cluster formation. The differ-
ence in weights obtained in each cluster indicates that the
importance of representations in the clustering process is
not equal.

For almost all clusters of the 20NG dataset, the zero to third
features are more important than the other attributes (see Fig.
7f). Of course, the degree of importance of each feature in
each cluster is different. Table 3 also shows that weighting
the features increases clustering accuracy. Evaluation of the
unbalancedReuters-10 k dataset also shows that some features
are very important in some clusters, while these features may
be less important in some other clusters. For example, in clus-
ter 1, the zero feature has a high significance, while in cluster
3, this feature is less important.

Discussion on neighbors As shown in Table 3, the proposed
approach performs better when using the neighboring tech-
nique than the one which doesn’t use it. By using the data
neighbors, better representations are generated. For the
Mnist-test dataset, the ACC and NMI rates of the proposed
approach (first row in Table 3), compared to without using
neighbor modes, are improved by an average of 0.10% and
0.22%, respectively. Also, for the USPS dataset, the ACC and
NMI rates of the proposed approach are improved by an aver-
age of 0.75% and 1.13%, respectively, as opposed to without
using neighbor modes. Similarly, for the Mnist and Fashion-
Mnist datasets, the results in the proposed method are better
than in the case without the use of neighbors. The same dis-
cussion is also true for the Reuters-10 k and 20NG datasets.
The neighboring technique effectively improves network per-
formance. However, the selection of neighbors depends on the
learned embedded space. If the suitable embedded space is not
learned for clustering, the neighbors will not be selected cor-
rectly, and as a result, the network performance may be re-
duced. The two steps are essential for generating better
cluster-oriented embedding space: (1) pre-training phase and
(2) designing appropriate architecture based on the data type.
If the network pre-training is done well, from the initial epochs
of training, appropriate and correct neighbors are selected, and
as a result, better representations are generated. By applying
both of them, a suitable embedded space will be generated.
Therefore, better neighbors are selected. In the proposed ar-
chitecture, inspired by IDEC, we use dense layers. Certainly,

Table 3 Effect of representation
weighting, neighbors, and
proposed formulation

Representation
weighting

Neighboring Formulation Dataset

Mnist Fashion-
Mnist

Mnist-
Test

USPS Reuters-
10 k

20NG

✓ ✓ proposed 98.80 62.50 98.66 98.21 83.72 58.14

96.60 68.09 96.35 95.18 60.64 51.83

✓ ✓ IDEC 98.66 62.36 98.58 97.78 82.91 57.26

96.31 67.80 96.19 94.39 59.84 51.26

✓ ✘ proposed 98.69 62.40 98.54 97.63 83.45 57.75

96.39 67.88 96.07 94.45 60.31 51.35

✓ ✘ IDEC 98.72 62.44 98.59 97.34 82.80 57.20

96.44 68.03 96.23 93.81 59.64 51.20

✘ ✓ proposed 98.72 62.46 98.60 98.00 82.85 57.30

96.47 68.08 96.19 94.65 59.66 51.31

✘ ✓ IDEC 94.78 58.56 98.64 97.76 81.97 57.20

88.36 63.41 96.34 94.48 58.93 51.14

✘ ✘ proposed 98.61 62.36 98.51 97.60 82.06 57.24

96.23 67.84 96.00 94.36 59.11 51.23

✘ ✘ IDEC 98.66 62.42 98.59 97.34 81.72 56.14

96.35 67.96 96.23 93.81 58.64 49.83

The best results are in boldfaced
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Fig. 7 Visualization of the weight of representations. (a) Mnist, (b) Fashion-Mnist, (c) Mnist-Test, (d) USPS, (e) Reuters-10 k, and (f) 20NG
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simple dense layers are not suitable for generating the proper
representations for the tested image datasets. The purpose is to
compare fairly with other methods and investigate the effect of
each used technique.

Discussion on formulation As shown in Table 3, the proposed
approach performs better with the proposed formulation.
Using a new formation, the ACC and NMI rates of the pro-
posed method on all testing datasets are improved by an av-
erage of 0.72% and 1.19%, respectively. For some datasets,
such as USPS and Fashion-Mnist, the effect of the proposed
formulation is more significant than other datasets. In the
Mnist dataset, the ACC and NMI rates of the proposed ap-
proach are improved by an average of 1.02% and 2.18%,
respectively, as opposed to IDEC modes. Similarly, in the
Fashion-Mnist dataset, the ACC and NMI rates of the pro-
posed approach, compared to IDEC modes, are improved by
an average of 1.60% and 1.75%, respectively. Also, for the
USPS andMnist-test datasets, the proposed method has better
results than the IDEC modes.

As shown above, all used techniques somehow positively
affect the final result. Representation weighting, proposed for-
mulation, and applied neighboring techniques have the most
positive effect on the final results, respectively.

5.4 Experiment 2: Visualization of the learned
representations

In an attempt to offer a more interpretable outlook of the
representations generated through deep clustering algorithms,
we visualize the embedded samples generated by the
EDCWRN, DEC [27], IDEC [22], DCEC [53], and DynAE
[23] on all tested datasets. We use the UMAP (Uniform
Manifold Approximation and Projection) [47] visualization
approach to project the embeddings into a 2D space. Some
comparative methods were developed only on a specific task,
such as image or text. Therefore, comparisons are performed
on image and text datasets separately to investigate the perfor-
mance of the algorithms.

5.4.1 Image datasets visualization

Figures 8, 9, 10 and 11 show the visualization of different
methods on Mnist, Fashion-Mnist, Mnist-Test, and USPS
datasets, respectively. As shown in these figures, the represen-
tations for samples from different clusters are better separated
and disentangled in EDCWRN than in the other methods. This
further validates our experimental results, indicating the
superior ability of EDCWRN to learn representations that
improve clustering. To better evaluate each of the algo-
rithms and compare their results with the proposed meth-
od, EDCWRN is compared with each of the algorithms
one by one:

EDCWRN vs. DEC For the Mnist and Mnist-Test datasets, as
shown in Figs. 8 and 9, the proposed method can well pre-
serve the distance between and within the cluster. In contrast,
the DEC method can not distinguish the two clusters well.
Thus, almost all samples of these two clusters are incorrectly
predicted. For the USPS and Fashion-Mnist dataset datasets,
in the proposed method, the intra-cluster variance is less than
the DEC method, which indicates that the clusters are more
compact.

EDCWRN vs. IDEC Similar to the DECmethod, the IDECmeth-
od can not distinguish some clusters well. This is obvious in
theMnist,Mnist-Test, and USPS datasets (see Figs. 8, 10, and
11). While for these datasets, the EDCWRN method can dis-
tinguish the clusters well. Also, using the IDEC method, al-
most none of the clusters of the Fashion-Mnist dataset don’t
separate well (see Figs. 9). However, in the EDCWRN, the
variance between the clusters and within the cluster is relative-
ly preserved.

EDCWRN vs. DynAE DynAE creates better clusters than the
other two previous methods. This method works well for
Mnist, Mnist-Test, and USPS datasets (see Figs. 8, 10, and
11). For these datasets, the global (inter-cluster) distance is
almost preserved. However, in terms of intra-cluster variance,
the proposed method performs better. For the fashion-Mnist
dataset, the DynAE method does not work properly. So that
almost none of the clusters will be separated.

EDCWRN vs. DCEC: using the DCEC method, a few
clusters of the Fashion-Mnist dataset separated well. Also, in
some datasets, samples of a cluster are concentrated at two or
more points. This is obvious in the Mnist, Mnist-Test, and
USPS datasets. This is quite clear in the yellow cluster of the
Mnist dataset. In contrast, EDCWRN performs better than the
DCEC algorithm because the samples do not overlap, and the
variance between and within the cluster is further preserved
than in the DCEC method.

5.4.2 Text datasets visualization

Figures 12 and 13 show the visualization of different methods
on Reuters-10 k, and 20NG datasets, respectively. As shown
in these figures, the representations for samples from different
clusters are better separated and disentangled in EDCWRN
than in the other methods. This further validates our experi-
mental results, indicating the superior ability of EDCWRN to
learn representations that improve clustering. To better evalu-
ate each of the algorithms and compare their results with the
proposed method, EDCWRN is compared with each of the
algorithms one by one:

EDCWRN vs. DEC For the Reuters-10 k dataset, as shown in
Fig. 12, the DEC method can separate the clusters more
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Fig. 8 Visualization of the learned representations onMnist dataset. a DEC, b IDEC, c DynAE, d DCEC, and e EDCWRN

Fig. 9 Visualization of the learned representations on Fashion-Mnist dataset. a DEC, b IDEC, c DynAE, d DCEC, and e EDCWRN
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Fig. 10 Visualization of the learned representations onMnist-Test dataset. a DEC, b IDEC, c DynAE, d DCEC, and e EDCWRN

Fig. 11 Visualization of the learned representations on USPS dataset. a DEC, b IDEC, c DynAE, d DCEC, and e EDCWRN

EDCWRN: efficient deep clustering with the weight of representations and the help of neighbors



distinctly. But a closer look reveals that in some clusters,
almost all samples are incorrectly predicted. This is also true
for the 20NG data set. Although the proposedmethod does not
preserve the inter-cluster distance for the Reuters-10 dataset, it
performs better than the DEC algorithm because the samples
do not overlap.

EDCWRN vs. IDEC Similar to the DECmethod, the IDECmeth-
od can not distinguish some clusters well. This is obvious in
the 20NG dataset (see Figs. 13), while the EDCWRN method
can determine the clusters well. Also, using the IDECmethod,
some of the clusters of the Reuters-10 k dataset don’t separate
well (see Figs. 12). However, on this dataset, EDCWRN per-
forms better than the IDEC algorithm because the samples do
not overlap.

EDCWRN vs. DynAE For the Reuters-10 k dataset, as shown in
Fig. 12, it appears that the DynAE method can not well pre-
serve the distance between the clusters. Also, on the 20NG
dataset, almost all the samples are overlapped, and clusters
don’t well separate. However, on these datasets, EDCWRN
performs better than the DynAE algorithm because the sam-
ples do not overlap, and the variance between and within the
cluster is further preserved than DynAE.

5.5 Experiment 3: Analysis of the behavior of the loss
function

To investigate the effect of the loss function adopted in the
proposed method and compare it with the KLD loss function,
we evaluate the proposed method once with the cross-entropy
loss function (Eq. (13)) with the proposed distribution (Eq.
(11)) and once with the KLD loss function (Eq. (3)) with T
student distribution (Eq. (4)). In both cases, the representation
weighting and neighboring techniques are used. In this exper-
iment, we calculate the inter-cluster variance in the embedded
space for both cases. Table 4 shows the results.

As shown in Table 4, for all datasets, the proposed method
using cross-entropy with the proposed distribution has a high
inter-cluster variance. In contrast, the proposed method using
KLD with T student distribution has a low inter-cluster vari-
ance. The results show that for the Mnist dataset, the inter-
cluster variance in the proposedmethod is much higher than in
the opposite case. After the Mnist dataset, Mnist-Test, USPS,
and Fashion-Mnist have the most inter-cluster variance, re-
spectively. Also, for the text dataset, the variance in the pro-
posed method is slightly higher. These results show that the
proposed method using the cross-entropy loss function with

Fig. 12 Visualization of the
learned representations on
Reuters-10 k dataset. a DEC, b
IDEC, c DynAE, and
d EDCWRN
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the proposed distribution can preserve the inter-cluster dis-
tance (global distance) much better than the opposite.

5.6 Experiment 4: Analysis of the robustness to noise

To investigate the robustness of the proposed method and com-
pare it with other methods, in this experiment, we add three
common kinds of noise to the image datasets as follows:
Gaussian noise with the variance of 0.01, 0.03, and 0.05;
Salt&Pepper noise with density 0.05, 0.1, and 0.2; Speckle noise
with variance 0.05, 0.1, and 0.15. The results of the EDCWRN,

theDEC [27], IDEC [22], andDynAE [23]methods on the noisy
data are shown in Table 5. The table provides the ACC and NMI
rates from top to bottom for each method, respectively.

As shown in Table 5, the proposed method performs better
than other methods for all noise levels and datasets. The dif-
ference between the best and worst results obtained on all
datasets in the proposed method is on average 1.15%, and
1.17% for ACC and NMI metrics, respectively. For the DEC
algorithm, this value is 4.07% (ACC) and 3.05% (NMI); for
the IDEC algorithm, this value is 2.25% (ACC) and 2.15%
(NMI); and for the DynAE algorithm, this value is 1.35%

Fig. 13 Visualization of the
learned representations on 20NG
dataset. a DEC, b IDEC, c
DynAE, and d EDCWRN

Table 4 Comparison of the inter-
cluster variance of EDCWRN
with different loss functions

Dataset

Method Mnist Fashion-
Mnist

Mnist-
Test

USPS Reuters-
10 k

20NG

KLD loss function with T student
distribution

1.842 0.73 0.57 0.699 0.428 1.469

cross-entropy loss function with the
proposed distribution

10.69 1.66 2.539 2.41 0.43 1.569

The best results are in boldfaced
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(ACC) and 1.27% (NMI). As the statistical results show after
EDCWRN, the DynAE, IDEC, and DEC methods have the
best results, respectively. Therefore, the proposed algorithm
has a better overall performance than the other methods on all
datasets and is more robust to noise.

5.7 Experiment 5: EDCWRN vs. state-of-the-art
methods

In this section, EDCWRN’s performance is compared with other
state-of-the-art methods. Some comparative methods were eval-
uated only on a specific dataset, such as image or text. Therefore,
comparisons are performed on image and text datasets separately
to investigate the performance of the algorithms.

5.7.1 Evaluation of image datasets

In this section, we compare the performance of the proposed
algorithm with other clustering methods on image datasets. The
performance of different methods is illustrated in Table 6. The
table provides the ACC and NMI rates from top to bottom for
each method, respectively. The results related to other methods
have been mentioned directly from the relevant publications.

As Table 6 shows, the performance of EDCWRN is the best
concerning all datasets except Fashion-Mnist. The results indicate
the higher performance of EDCWRN compared to other success-
ful methods in this field. After EDCWRN, DynAE, ADEC, and
DSCDANmethods have relatively good performance, respective-
ly. Also, we can find that almost methods perform well on all

Table 5 Clustering performance with different kinds of noise

Dataset Method Noise

Gaussian Salt&Pepper Speckle

(0.01) (0.03) (0.05) (0.05) (0.1) (0.2) (0.05) (0.1) (0.15)

Mnist DEC 85.1
82.2

85.0
81.9

84.9
81.8

84.2
81.7

83.5
81.2

81.2
80.0

84.5
81.0

83.9
81.2

82.2
80.5

IDEC 88.1
86.7

88.0
86.5

87.9
86.0

87.9
86.3

87.0
86.1

85.7
84.9

87.7
86.2

87.5
86.3

86.9
86.0

DynAE 98.7
96.4

98.6
96.3

98.5
96.3

98.5
96.6

98.0
96.4

97.5
95.2

98.3
96.5

98.1
96.5

97.9
96.3

EDCWRN 98.8
96.6

98.7
96.5

98.6
96.5

98.6
96.5

98.1
96.4

97.8
95.6

98.6
96.5

98.2
96.5

98.0
96.4

Fashion-Mnist DEC 51.7
54.4

51.6
54.1

51.5
54.0

50.7
53.9

50
53.4

47.7
52.2

51.0
53.2

50.4
53.4

48.7
52.7

IDEC 52.8
55.6

52.5
55.4

52.4
54.9

52.4
55.2

51.5
55.0

50.2
52.7

52.2
55.1

52.0
55.5

51.4
54.9

DynAE 59.0
64.0

58.9
63.9

58.8
63.7

58.8
63.3

58.3
63.0

57.3
62.4

58.6
63.6

58.4
63.2

58.2
63.0

EDCWRN 62.4
67.9

62.3
67.8

62.2
67.7

62.3
67.8

61.7
67.2

61.1
66.4

62.0
67.5

61.7
67.2

61.5
66.9

Mnist-test DEC 84.9
81.8

84.7
81.6

84.2
81.0

83.4
80.3

82.6
80.1

80.4
79.7

83.8
80.9

83.1
80.2

81.3
80.0

IDEC 84.5
80.0

84.6
79.8

84.5
77.8

84.5
79.6

83.6
79.4

82.3
78.2

84.3
79.5

84.1
79.6

83.5
79.3

DynAE 98.6
96.3

98.5
96.3

98.5
96.2

98.4
96.6

98.0
96.3

97.4
95.2

98.3
96.4

98.0
96.3

97.8
96.2

EDCWRN 98.6
96.5

98.4
96.5

98.5
96.4

98.5
96.6

98.1
96.4

97.6
95.4

98.5
96.4

98.1
96.5

97.9
96.4

USPS DEC 76.0
76.4

75.8
76.0

75.6
75.7

75.1
75.9

74.4
75.4

72.1
74.2

75.2
75.2

74.8
75.4

73.1
74.7

IDEC 76.1
78.5

76.0
78.0

75.9
77.5

75.9
77.8

75
77.6

73.7
76.4

75.7
77.7

75.5
77.8

74.9
77.5

DynAE 98.1
94.8

98.0
94.7

97.9
94.7

97.9
95.0

97.4
94.8

96.9
93.6

97.7
94.9

97.5
94.9

97.3
94.7

EDCWRN 98.3
95.2

98.2
95.1

98.2
95.1

98.2
95.1

97.6
94.9

97.0
94.1

98.2
95.0

97.5
94.7

97.2
94.3

The best results are in boldfaced

A. Golzari Oskouei et al.



image datasets. What is more, EDCWRN outperforms traditional
deep clustering algorithms, such asDEC, IDEC, andDCN,with a
large margin. That indicates the fascinating potential of
EDCWRN in the unsupervised clustering field.

The average results for EDCWRN and other compared algo-
rithms are shown in Table 7. As this table shows, EDCWRN has
the best results. Regarding ACC criteria, after EDCWRN, the
methods of DynAE, ADEC, JULE, and DEPICT have better
outcomes, respectively. Also, in terms of NMI criteria, after
EDCWRN, the methods ADEC, DynAE, JULE, and DEPICT
have better outcomes, respectively.

5.7.2 Evaluation of text datasets

In this section, we compare the performance of the proposed
algorithm with other clustering methods on text datasets. The
performance of different methods is illustrated in Table 8. The
table provides the ACC and NMI rates from top to bottom for
each method, respectively. The results pertaining to other
methods have been mentioned directly from the relevant
publications.

The results indicate the higher performance of EDCWRN
compared to other successful methods in this field. After
EDCWRN, ADEC, and DCN methods have relatively good
performance, respectively. As shown in Table 8, some state-
of-the-art methods, such as SDEC, yield produce poor perfor-
mance on the unbalanced 20NG dataset. Compared to other
algorithms, our model gets higher performance on all text
datasets. Undoubtedly, EDCWRN is efficient in learning dis-
criminative features and the samples are gradually well sepa-
rated with the training procedure.

Comparing Tables 4 and 6 shows that most DEC-based
methods have almost higher performance on image datasets than
text datasets. This is because the original DEC method is highly
efficient on balance datasets. As a result, improved DEC-based
methods also work well for balance datasets. In the experiments,
image datasets are balanced, while text datasets are unbalanced.
The efficiency of DEC-based methods is significantly reduced
for unbalanced text datasets. The applied representation
weighting technique in the proposedmethod solves this problem.
In the 20NG dataset, which is highly unbalanced, the ACC and
NMI have been significantly improved.

6 Conclusion

Many studies have been conducted to design an efficient deep
clustering framework. These investigations have developed a
suitable architecture or introduced a proper clustering loss
function. In these methods, it was assumed that all the gener-
ated representations were of equal importance during the clus-
tering procedure. However, all generated representations may
not be suitable for clustering. Also, these methods used the

Table 6 The performances of the proposed algorithm and other
clustering methods

Methods Datasets

Mnist Fashion-
Mnist

Mnist-
Test

USPS

DEC [25] 86.3 51.8 85.6 76.2

83.4 54.6 83.0 76.7

DCN [52] 83.0 50.1 80.2 73.0

81.0 55.8 78.6 71.9

PSSC [53] 89.0 – – 93.5

79.0 – – 85.6

DASC [41] 80.1 – 80.4 –

78.4 – 78.0 –

VaDE [42] 94.5 57.8 28.7 56.6

87.6 63.0 28.7 51.2

DCEC [44] 88.9 49.0 85.29 79

88.4 51.9 83.61 82.5

JULE [43] 96.4 56.3 96.1 95.0

91.3 60.8 91.3 91.3

SDEC [49] 86.11 52.8 – 76.3

82.89 59.31 – 77.6

DEPICT [46] 96.5 39.2 96.5 96.4

91.7 39.2 91.5 92.7

IDEC [22] 88.1 52.9 84.6 76.1

86.7 55.7 80.2 78.5

DSCDAN [47] 97.8 66.2 98.0 86.9

94.1 64.5 94.6 85.7

DBC [27] 96.4 – – 74.3

91.7 – – 72.4

DKM [48] 86.2 – – 77.0

80.5 – – 78.7

ADEC [30] 98.6 58.6 98.5 98.1

96.1 66.2 95.7 94.8

DynAE [23] 98.7 59.1 98.7 98.1

96.4 64.2 96.3 94.8

SDKSC [51] 87.1 60.0 83.3 –

78.1 62.3 77.4 –

DeepCluster [45] 79.7 54.2 85.4 56.2

66.1 51.0 71.3 54.0

DECCA [24] 96.3 60.9 – 77.31

90.7 66.9 – 80.53

LMVSC [50] 55.7 51.2 57.2 67.5

50.3 51.9 51.6 62.1

EDCWRN 98.8 62.5 98.7 98.3

96.6 68.0 96.3 95.2

The best results are in boldfaced
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Kullback–Leibler Divergence (KLD) loss function to train the
model. This loss function does not preserve global data struc-
ture; therefore, it is generally agreed that clustering by the
KLD loss function is not a good idea.

In this study, motivated by these weaknesses, we presented an
efficient deep model to learn representations and cluster labels
jointly, termed EDCWRN, applying an automatic local represen-
tation weighting strategy to weight the representations of each
cluster properly.Moreover, we used the samples and their neigh-
bors in the clustering procure to generate cluster-oriented mean-
ingful representation. The formulation of the proposed algorithm
was different from the other deep clustering methods, which
significantly improved the results. In this study, we found that
weighting the extracted representations has the most positive
effect on the results and leads to better clustering. We also found
that using the data neighbor technique to learn better representa-
tions is very effective. However, how neighbors are calculated

can sometimes reduces network performance. Experimental re-
sults concerning four benchmark datasets indicated that the pro-
posed algorithm generates better representations for clustering.

In future work, we would like to try other techniques for
computing the feature weights. Moreover, it would be inter-
esting to investigate the application of the EDCWRN in large
image/text datasets. Estimating auxiliary target distribution
(pseudo-labels) is an important step for deep clustering.
Accurate estimation of these pseudo-labels can greatly con-
tribute to optimal clustering. Studying other possible target
distribution formulations can be an interesting line of research.

Appendix 1

Eq. (12) is optimized using backpropagation and SGD (mini-
batch stochastic gradient descent.

Theorem 1 Let target distribution P be fixed, the gradients of
Lc concerning embedded point fθ(xim) and cluster center rjm
can be computed via Eq. (A.1):

Proof

∂Lc

∂ f θ ximð Þ ¼ 2ab∑
j

pij wjm rjm−xim
� �

wjm rjm−xim
� �2� �b−1

a wjm rjm−xim
� �2� �b

þ 1

ðA:1Þ

∂Lc

∂rjm
¼ −2ab∑

i

pij wjm rjm−xim
� �

wjm rjm−xim
� �2� �b−1

a wjm rjm−xim
� �2� �b

þ 1
ðA:2Þ

Then given a mini-batch with N samples and learning rate
γ, rjm,W (decoder’s weights),W (encoder’s weights), and are
updated by Eqs. (A.3) to (A.5), respectively:

rjm ¼ rjm−
γ
N

∑
N

n¼1

∂Lc

∂rjm
ðA:3Þ

W ¼ W−
γ
N

∑
N

n¼1

∂Lc

∂W
ðA:4Þ

Table 7 The average performance of EDCWRN as well as other state-of-the-art methods

DEC VaDE JULE DEPICT IDEC DSCDAN ADEC DynAE DeepCluster LMVSC EDCWRN

ACC 74.97 59.40 85.95 82.15 75.42 87.22 88.45 88.65 68.87 57.90 88.70

NMI 74.42 57.62 83.67 78.77 75.27 84.72 88.20 87.92 60.60 53.97 88.27

The best results are in boldfaced

Table 8 The
performances of the
proposed algorithm and
other clustering methods
on text datasets

Method Dataset

Reuters-10 k 20NG

DEC [25] 72.1 50.1

49.7 45.3

DCN [52] 80.0 44.0

76.0 48.0

PSSC [53] 78.0 –

46.3 –

VaDE [42] 79.3 –

52.1 –

SDEC [49] 67.9 31.04

50.8 31.55

IDEC [22] 75.6 53.6

49.8 44.4

DKM [48] 58.3 51.2

33.1 46.7

DynAE [23] 73.2 47.5

43.2 45.2

ADEC [30] 82.1 –

60.5 –

EDCWRN 83.7 58.1

60.6 51.8

The best results are in boldfaced
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W ¼ W−
γ
N

∑
N

n¼1

∂Lr

∂W
þ λ

∂Lc

∂W

� �
ðA:5Þ
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