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a b s t r a c t

The fuzzy c-means (FCM) algorithm is a popular method for data clustering and image segmentation.
However, the main problem of this algorithm is that it is very sensitive to the initialization of primary
clusters, so it may not perform well in segmenting complex images. Another problem with the FCM
is the equal importance of the image features used during the segmentation process, which causes
unstable performance on different images. In this paper, we propose an FCM-based color image
segmentation approach, termed CGFFCM, applying an automatic cluster weighting scheme to reduce
the sensitivity to the initialization, and a group-local feature weighting strategy to better image
segmentation. Also, we combine the proposed clustering algorithm with the Imperialist Competi-
tive Algorithm (ICA) to optimize the feature weighting process. In addition, we apply an efficient
combination of image features to increase the segmentation quality. The performance of CGFFCM is
evaluated and compared with state-of-the-art methods (such as SMKIFC (semi-supervised surrogate-
assisted multi-objective kernel intuitionistic fuzzy clustering), and A-PSO-IT2IFCM (alternate particle
swarm optimization based adaptive interval type-2 intuitionistic FCM clustering algorithm)) using the
Berkeley benchmark dataset. The results obtained by CGFFCM are 95%, 79%, and 91%, in terms of
average Accuracy, NMI, and F-score metrics, respectively, which all are better than the competitors.
The implementation source code of CGFFCM is made publicly available at https://github.com/Amin-
Golzari-Oskouei/CGFFCM.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Image segmentation is the process of segmenting a digital
image into several parts (a set of pixels or super-pixels). The
aim is to simplify or change the representation of an image into
something more meaningful and easier to analyze. In computer
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vision, the clustering-based image segmentation method is used
in various applications such as object detection [1], people count-
ing [2–4], face and facial expression recognition [5], fingerprint
recognition [6], fire detection [7], medical image processing [8]
and other industrial and monitoring applications [9–12]. In recent
decades, various image segmentation methods have been pro-
posed that can be classified into three categories: threshold-based
methods [13,14], cluster-based methods [15–21], and region-
based methods [19]. The different approaches proposed in each
of these methods have their advantages and limitations. Among
these methods, the cluster-based one is trendy and useful because
of retaining more image information, easy and fast implementa-
tion [19], and the good results they provide [18].

The fuzzy c-means (FCM) clustering algorithm [22] is one of
the most popular clustering algorithms that is applied for image
segmentation. In this method, a pixel can be assigned to several
clusters with different degrees of membership. Fuzzy clustering
methods (such as FCM) compared to hard clustering methods
(such as k-means [23]) can retain more image information and
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achieve better segmentation results [24]. Also, the fuzzy member-
ship function in this algorithm helps us to discover the complex
relationships between a sample (here the pixels) and all clusters
more accurately [25].

However, the main problem of the FCM algorithm is its sensi-
tivity to the initial cluster centers, which can drop its performance
in segmenting complex images with inhomogeneous regions [26].
Another problem with this algorithm is that it considers the same
importance for all features [27,28], while in most of the clus-
tering applications, especially in the color image segmentation
task, usually various groups of features (such as a group of color
features, a group of texture features, a group of edge features,
etc.), including sub-features, are utilized [17]. As the number of
features increases, some features may be less important in some
images while more important in others. Hence, considering the
same weight for all of the features in a group makes the result of
image segmentation unsatisfactory [16,17]. To better understand
this fact, see Fig. 1. This figure shows each of the RGB color
channels of a sample image. As shown in this figure, the G channel
is likely to be a better feature for segmenting this image. In fact,
in this channel, each part of the image is well separated and does
not overlap, while, in channel R, and even worse in channel B,
the parts are not clearly separable and may have many overlaps.
This can be true for other groups of features, so considering the
same weight for all types of features and sub-features is likely to
reduce the efficiency of the clustering.

Regarding the FCM’s sensitivity to the initialization problem,
various methods have been proposed so far. Most of them can
be used for all clustering-based applications, and some methods
have been proposed explicitly for the image segmentation task.
Some methods, such as the fuzzy c-mean++ [29], try to eliminate
dependence on random initial conditions by spreading the initial
cluster representatives in the data space at the initialization step.
Some methods apply a scheme to prevent the formation of low-
quality clusters during the algorithm’s iteration. For example, the
methods presented in [28,30] start from random centers, and
the desired centers are calculated automatically during algorithm
iterations.

The method in [31] presents an unsupervised fuzzy-model-
based image segmentation method. This method combines gen-
eralized Gaussian density and color into the fuzzy clustering
algorithm and incorporates their neighboring information into
a learning process to improve segmentation results. Also, this
method uses membership entropy to reduce the sensitivity to
primary clusters. Some other methods try to eliminate this sen-
sitivity by combining the meta-heuristic methods with the FCM
or k-means algorithm. The CSFCM method [32] improves the
FCM-based image segmentation by combining it with three meta-
heuristics of genetic, biogeography, and firefly. In [33], to find
the suitable cluster centers and the fuzzifiers, a method called A-
PSO-IT2IFCM has been introduced for image segmentation using
the particle swarm optimization (PSO) algorithm. In [34], a com-
bined algorithm based on modified k-means and ICA (Imperialist
Competitive Algorithm) was developed, in which cluster cen-
ters were selected and computed appropriately. In [35], authors
proposed ICAFCM (combined algorithm based on FCM and ICA)
and PSOFCM (combined algorithm based on FCM and PSO) algo-
rithms aiming to help the FCM to escape from local optima and
increase the convergence speed of the ICA and PSO algorithms
in the clustering process. Other similar methods were proposed
in [36–38]. Most of these methods aim to find the appropriate
number of clusters or primary centers. These methods often use
standard clustering methods (such as FCM or k-means). Although
by selecting the appropriate initial centers, the initialization sen-
sitivity is reduced, the problem of giving equal importance to
the features remains. In fact, finding appropriate initial centers is

necessary but not enough. Without the proper feature weighting
mechanism, the results do not improve significantly.

In recent years, Multi-Objective Evolutionary Algorithms
(MOEAs) have gained more attention. Zhao et al. [20,33,39] ap-
plied it to intuitionistic fuzzy clustering optimization for the
color image segmentation tasks. The purpose of this algorithm
was to find the optimal cluster centers. The main problem with
MOEA was its high computational cost. To solve this problem, a
method, called KRVEA (Kriging-assisted reference vector guided
evolutionary algorithm), was proposed in [40]. Zhao et al. [20]
also used KRVEA to find the cluster centers in the intuitionistic
fuzzy clustering algorithm for the color image segmentation task.

To solve the second problem of FCM (i.e., the problem of
giving equal importance to various features), different feature
weighting techniques [41] have been proposed, as well. Feature
weighting techniques can be divided into two groups. The first
group includes the algorithms that assign weights to the features
globally. That is, a given feature is assigned with only one weight
along with all the clusters. The methods in the second group
assign local weights to the features, and thus, the same feature
has different weights in different clusters. This scheme has shown
a better performance than the global weighting scheme [28].

In 2014, Xing et al. [16] presented an image segmentation
method based on feature-weighted FCM algorithm. They intro-
duced a global feature weighting algorithm, namely IFWFCM.
IFWFCM automatically computed feature weights in the seg-
menting process. In 2016, a method called ‘‘maximum-entropy-
regularized weighted FCM (EWFCM)’’ was introduced [42]. In this
method, a new objective function, based on the local feature-
weight entropy regularization technique, was proposed to find
the optimal weights for the features. A robust local feature weight-
ing hard c-means (RLFWHCM) approach was proposed in [43].
In this method, the weights of features were automatically cal-
culated per cluster during the iteration process. In 2018, a new
method called weighted k-harmonic means (WKHM) clustering
algorithm using feature weighting for color image segmentation
was introduced [17], which applied a global feature weighting
technique.

In [44], a new objective function based on a kernel metric was
proposed. They used local feature weighting scheme to find those
clusters that have linearly non-separable patterns or non-hyper-
spherical shapes. In their work, a multi-objective optimization
method was proposed to be used in a feature-weighted clustering
process. Two separate objective functions, taking into account
the inter-cluster separation and intra-cluster compactness, were
optimized simultaneously. Other feature weighting methods are
introduced in [43,45].

Recently, in [28], we presented a new FCM-based cluster-
ing algorithm based on the local feature weighting and cluster
weighting schemes to overcome the two problems mentioned
above. In this method, cluster weighting was used to reduce the
FCM’s sensitivity to the selection of initial centers, and feature
weighting was used to increase the accuracy of the clustering. The
experiments confirmed that the local feature weighting technique
(weighting the features in each cluster separately) is more useful
than the global weighting methods (weighting the features by the
same weights in all clusters). However, in this method, as in other
methods, the difference in the importance of the sub-features of
a group of features, which can be very effective in the correct
segmentation of images, has not been considered.

In this paper, we propose an FCM-based color image segmen-
tation approach, according to the following motivation, method
and results, contribution, and research questions.

Motivation: As stated above, some improved versions of the
FCM algorithm have been proposed in the literature, each of
which has somehow mitigated the first problem (equal impor-
tance of features) or the second one (sensitivity to initialization).
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Fig. 1. Three color features extracted from an RGB image. (a) Input image, (b) channel R, (c) channel G, and (d) channel B.

However, to the best of our knowledge, the difference in the
importance of the sub-features of a group of features, which
can be very effective in the correct segmentation of images,
has not been considered yet. Also, for the image segmentation
task, simultaneous treatment of the two mentioned problems
of FCM has not been considered. Motivated by this knowledge
and given the fact that the two mentioned problems can coexist
in almost all real-world clustering-based image segmentation
tasks, we propose an improved FCM-based segmentation method,
termed CGFFCM (Cluster-weight and Group-local Feature-weight
learning in Fuzzy C-Means clustering algorithm), to overcome the
two problems simultaneously.

Method and Results: In order to cope with the two problems
of FCM-based image segmentation (i.e., the equal importance
to features and initialization sensitivity problems), an automatic
cluster weighting scheme is designed to reduce the initialization’s
sensitivity, and a group-local feature weighting strategy is applied
to better segmentation of the images. In the proposed group-
local feature weighting technique, the local weights and group
weights of features in each cluster are measured independently.
To find the values of the optimal weights of each group, we
combine the clustering procedure with the ICA meta-heuristic
optimization method [46]; therefore, all weights, including the
weights of the groups and the weights of the features within
each group, are calculated automatically and optimally during the
clustering process. Moreover, we utilize an efficient combination
of image features, consisting of eight features from three groups
of features (i.e., local homogeneity, color space, and texture), to
have better segmentation results. Local homogeneity is a feature
based on the local image information and refers to the image
regions’ uniformity. We use each of the HSV color channels to
calculate local homogeneity for each pixel. Thus three features are
extracted. To extract the color feature, we use the CIELAB color
space. The color component of a pixel in each CIELAB channel
is considered as the color feature of that pixel. Therefore, the
three features L, A, and B are considered as the color features of
the image. Also, to calculate the texture components, we use the
Gabor filter and Gray-Level Co-occurrence Matrix (GLCM).

Most of the existing clustering methods, such as [35–38,47],
which are a combination of clustering algorithms and ICA meth-
ods, have two general goals: (1) finding suitable cluster centers,
and (2) find the appropriate number of clusters. Unlike the ex-
isting methods, the proposed method uses the ICA metaheuristic
algorithm to find the weight coefficient of groups. Moreover, the
optimal values of the cluster centers are obtained automatically
during the algorithm repetition (with cluster weighting tech-
nique). In addition, the main difference between the proposed
method and the existing methods is that most of the existing
methods use standard FCM algorithms and metaheuristic algo-
rithms (such as ICA, PSO, and GA). Basically no improvement
is suggested for FCM, while in the proposed method, a new
weighted and non-Euclidean distance function, namely a group-
local feature-weight technique, and a cluster weighting technique
have been added to the FCM algorithm.

The performance of CGFFCM is evaluated on the standard
Berkeley segmentation dataset [48] and compared with the re-
sults of other successful clustering algorithms. The obtained re-
sults show the high efficiency of the CGFFCM against the com-
petitors. Extensive experiments are performed to evaluate the
effectiveness of each solution applied in CGFFCM.

Contribution: In summary, the contributions of this work is
fourfold:

(1) To reduce the FCM’s sensitivity to initial centers, a cluster
weighting technique is applied. The weight of the clusters is cal-
culated dynamically while taking the importance of the features
and sub-features in each cluster into account;

(2) In the image segmentation process, the importance of the
extracted features is different for each image. A group of features
may be important in general, but the importance of a sub-feature
in a group may be less or more than other sub-features. Hence,
this paper introduces a group-local feature weighting technique.
In this technique, unlike other feature weighting techniques such
as local weighting (feature has different weights in different
clusters) or global weighting (feature has same weights in all
clusters), the groups and the sub-features in each group have
different weights depending on their importance in the clusters.
Thus weighting is done more effectively and efficiently, resulting
in better segmentation;

(3) Group-local feature weighting and cluster weighting are
performed simultaneously and automatically during the cluster-
ing process resulting in high-quality segments regardless of the
initial centers;

(4) An efficient combination of image features, consisting of
eight sub-features from three groups of features (i.e., local ho-
mogeneity, color space, and texture), is used to have better seg-
mentation results. The local homogeneity is based on the local
image information and refers to the image regions’ uniformity.
The CIELAB color space provides a perceptually uniform space,
meaning that the Euclidean distance between two color points in
the CIELAB color space corresponds to the perceptual difference
between the two colors by the human visual system [49]. The
texture components are also used together with color information
and local homogeneity to achieve better segmentation results.

Research Questions: we aim to answer the following research
questions in this study:

(1) Does weighting the clusters automatically reduce the sen-
sitivity of the FCM clustering-based image segmentation method
to the initialization?

(2) How much does weighting features and sub-features (in a
group-local feature-weighting manner) improve the performance
of the FCM clustering-based image segmentation method?

The rest of the paper is organized as follows. In Section 2, a
brief overview of our previous work presented in [28], which is
the basis of this work, and the ICA meta-heuristic algorithm [46]
are given. In Section 3, the proposed color image segmentation
approach is described in detail. In Section 4, the experimental
results are presented. In Section 5, the conclusions and possible
future works are discussed.
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2. Preliminaries

In this section, the clustering method presented in [28], which
is the basis of the proposed method (CGFFCM), and also the
ICA metaheuristic algorithm, which is used as an optimizer in
the feature weighting process in the proposed approach, are
introduced.

2.1. FCM clustering method based on feature-weight and cluster-
weight learning

The method in [28] presents a clustering algorithm that re-
duces the FCM’s sensitivity to the initialization by using a cluster
weighting scheme. It also uses a local feature weighting mech-
anism to increase the clustering accuracy. Also, it applies a new
objective function based on the non-Euclidean distance criterion.
This distance criterion is not sensitive to noise and outliers. The
method tries to minimize the objective function in Eq. (1):

F (U , C ,W , Z) =

N∑
n=1

K∑
k=1

unk
αzpkdnk, (1)

where, U = [unk] is a membership matrix, unk represents the
membership of nth data point to the kth cluster, C = [ckm] is a
matrix of cluster centers, ckm represent the mth feature in the kth
cluster, W = [wkm] is the feature weight matrix, wkm represents
the weight of mth feature in the kth cluster, Z = [zk] represents
cluster weight vector having the length of K , zk represents the
weight of kth cluster, N is the number of data points, K refers
to the number of clusters, and α is the fuzzification coefficient
(α > 1). The parameter p is within the range 0 ≤ p < 1. This
parameter controls the sensitivity of the weight updates to the
relative differences of the cluster variances. It helps the algorithm
to form balanced clusters in terms of cluster variance. See [28]
for more details on this parameter. dnk is a weighted and non-
Euclidean distance measure and is defined as Eq. (2). dnk shows
the distance between the nth sample (xnm) from the center of
the kth cluster (ckm). In calculating this distance, the weighting
of features in each cluster (wkm) is used. Therefore, to calculate
the distance of the nth sample from the kth cluster, the weight of
the features related to the kth cluster is considered.

dnk =

M∑
m=1

w
q
km(1 − exp

(
−γm (xnm − ckm)2

)
), (2)

where, γm shows the inverse variance of the mth feature of X
dataset, X = [xnm] is a dataset matrix, xnm represents the mth
feature in nth data point, and M refers to the number of features.
The parameter q is in the range q < 0 and q > 1. This parameter is
used for satisfying the ‘‘feature weighting principle’’ [28]. See [28]
for more details on how q works. The updating equations for unk,
ckm, wkm, and zk are obtained through Eqs. (3) to (6), respectively.

unk =
1∑K

l=1

[
zpk dnk
zpl dnk

] 1
(α−1)

, (3)

ckm =

∑N
n=1 unk

α exp
(
−γm (xnm − ckm)2

)
xnm∑N

n=1 unk
α exp

(
−γm (xnm − ckm)2

) , (4)

wkm =

⎧⎪⎪⎨⎪⎪⎩
1
hm

if Dwkm = 0 and hm = |{s:Dwks = 0}| ,
0 if Dwkm ̸= 0 but ∃s such that Dwks = 0,

1∑M
s=1

[
Dwkm
Dwks

] 1
q−1

if Dwks ̸= 0 . ∀1 ≤ s ≤ M.
(5)

Fig. 2. An example of the initial population of empires and colonies [46].

In Eq. (5) Dwkm =
∑N

n=1 unk
α(1 − exp

(
−γm (xnm − ckm)2

)
).

zk =

⎧⎪⎪⎨⎪⎪⎩
1
gk

if Dzk = 0 and gk = |{l:Dzl = 0}| ,
0 if Dzk ̸= 0 but ∃l such that Dzl = 0,

1∑K
l=1

[
Dzk
Dzl

] 1
p−1

if Dzl ̸= 0 . ∀1 ≤ l ≤ K.
(6)

In Eq. (6) Dzk =
∑N

n=1 unk
αdnk.

2.2. ICA algorithm

ICA [46] is a population-based metaheuristic algorithm that
has been used to solve a variety of optimization problems. This
algorithm is inspired by the imperialist competition concept,
which tries to present the social policies of imperialism to control
more countries and use the resources of the colonial countries. If
one empire loses its power, the other empires compete to take
its possession. In the ICA, this process is simulated by individuals
known as countries.

ICA starts with an initial population (i.e., the countries), and
the objective function is calculated. According to the rate ob-
tained for each country, the most powerful countries are chosen
as the imperialists, and the rest are the colonies of these impe-
rialists. Then, the imperialists start to compete with each other
to seize more colonies. The best imperialist has a better chance
of having more colonies. Then, each of the imperialists makes
their empire with his colonies. Fig. 2 shows an example of the
initial population of empires and colonies [46]. Larger empires
have more colonies, and smaller empires have fewer colonies. In
this figure, Imperialist 1 is the most powerful and has the largest
number of colonies.

After the division of the colonies between the imperialists,
these colonies approached their dependent imperialist countries.
After this movement, if one of the colonies has more power than
its corresponding imperialist, the imperialist and that colony will
exchange. To start the competition between empires, the total
value objective function for each empire must be calculated. This
value depends on both the imperialist and its colonies’ objective
functions. Then, the competition begins, and the weakest empire
loses its possession, and the powerful one tries to gain it. An
empire that has lost all of its colonies will fall. Eventually, the
most powerful empire will take over other empires and win the
competition. This competition-based evaluation method is used
as an optimization procedure.
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3. Methodology

3.1. Overview of the proposed method

Fig. 3 shows a general overview of the proposed image seg-
mentation approach. As shown in this figure, the process of seg-
mentation begins with the feature extraction step. The extracted
features are entered into the CGFFCM clustering algorithm. Along
with the clustering process, the ICA is applied to calculate the
parameters required in the clustering algorithm optimally. The
ICA is utilized to improve the CGFFCM by automatically and
optimally finding the weights of feature groups.

In the following, in Section 3.2, the extracted features from
color images are introduced; in Section 3.3, the CGFFCM clus-
tering method is described; and in Section 3.4, the way of com-
bining the ICA algorithm with the CGFFCM clustering method is
presented.

3.2. Feature extraction

By reviewing the previous research and studying the efficiency
of various features used for the color image segmentation pur-
pose [17,50,51], we propose to use an efficient combination of
image features, including local homogeneity, color, and texture.
In the following, each of these features is described.

(1) Local homogeneity
Local homogeneity is a feature based on the local image infor-

mation and refers to the image regions’ uniformity [17]. The local
homogeneity of the pixel (i, j) is obtained from Eq. (7):

Hij = 1 − Eij × Vij, (7)

where, Eij and Vij indicate the discontinuity and standard devia-
tion, respectively. To calculate the discontinuity, we first calculate
the gradient using the Sobel operator and then normalize it, as
Eq. (8):

Eij =
eij
emax

where eij =

√
G2
X + G2

y, (8)

where, emax = max
{
eij
}
, Gx, and Gy represent the image

gradient in the x and y directions, respectively.
We convert the input image to the HSV color space and then,

calculate the standard deviation in each color channel, according
to Eq. (9):

Vij =
vij

vmax
, vij =

√ 1
d2

i+
(
d−1
2

)∑
p=i−

(
d−1
2

)
j+
(
d−1
2

)∑
q=j−

(
d−1
2

)
(
Ipq − µij

)2
, (9)

where vmax = max
{
vij
}
, for an image with the size m× n, p ≤ m,

1 ≤ i, q ≤ n, and 1 ≤ j. wij is a window of size d × d (d = 5)
with pixel center (i, j) for calculating the deviation. µij is the mean
color component of the pixel in the center of the µij window,
which is calculated using Eq. (10):

µij =
1
d2

i+
(
d−1
2

)∑
p=i−

(
d−1
2

)
j+
(
d−1
2

)∑
q=j−

(
d−1
2

) Ipq. (10)

Fig. 4 shows a sample image and three local homogeneity
features extracted from three color channels.

(2) Color
To extract the color feature, we use the CIELAB color space. The

color component of a pixel in each CIELAB channel is considered

as the color feature of that pixel. CIELAB color space provides a
perceptually uniform space, meaning that the Euclidean distance
between two color points in CIELAB color space corresponds to
the perceptual difference between the two colors by the human
visual system [49]. Thus, in various machine vision applications,
the CIELAB color space has shown superior performance com-
pared to other spaces [17,52,53]. Also, previous research results
show that CIELAB is the most suitable color space for color image
segmentation using FCM [16,17,54]. Fig. 5 shows a sample image
and three color features extracted from CIELAB color channels.

(3) Texture
The texture is a common feature used in image segmenta-

tion. Texture components are often used together with color
information to achieve better segmentation results. The com-
bination of color and texture features in image segmentation
has better results than color features alone [55]. To calculate
texture components, we use the Gabor filter and Gray-Level Co-
occurrence Matrix (GLCM) [56]. These two methods are very ef-
ficient and common in various applications for extracting texture
features [51,57].

Analyzing an image by the Gabor filter is similar to the human
visual perception system. To obtain the texture feature at the
pixel level, we apply the Gabor filter to the image and extract
the local energy of the filter responses, which is considered as
the pixel’s texture feature.

The other texture feature used in our method is the GLCM.
GLCM is a set of features based on second-order statistics that
are easy to implement and performs well in terms of time and
complexity [56]. GLCM considers spatial correlation between im-
age pixels [58,59]. By using GLCM, better segmentation can be
achieved for images [60]. Fig. 6 shows a sample image and two
features extracted from its texture components.

After extracting the above three groups of features for each
pixel of the input image, an 8-dimensional feature vector, con-
sisting of three components of local homogeneity, three color
components, and two texture components, is constructed and fed
into the clustering step.

3.3. CGFFCM clustering

The CGFFCM clustering algorithm is inspired by our previous
work in [28]. However, in the CGFFCM, to better distinguish
between different groups of features, we use a group-local feature
weighting strategy to improve the clustering accuracy. In this
strategy, a weight is assigned to a group of features in all clusters
(group weighting), and another weight is assigned to each feature
in a group of features (local weighting).

The advantage of group-local feature weighting is most evi-
dent in image segmentation, where usually different groups of
features are used (e.g., the group of features extracted from the
color space). A group of features may be more important than the
other groups for segmenting an input image. Also, within a group,
there can be significant differences between the importance of
features. Therefore, assigning the same weight to all components
of a group of features (for example, all color channels in CIELAB),
in many cases, reduces the quality of the image segmentation.

For example, suppose that in an image, the CIELAB group
of features are more important than the other groups of fea-
tures. Also, within this group, the feature extracted from chan-
nel A contains more information for better segmentation of the
image. By using the group-local feature weighting mechanism,
the groups with more information and more important features
within those groups gain more weight. In fact, to segment an
image, those groups of features and sub-features that are suitable
for segmenting the given image play a more effective role.

5
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Fig. 3. Diagram of the proposed approach.

Fig. 4. Three local homogeneity features extracted from HSV color channels. (a) Input image, and the feature extracted from channel (b) H, (c) S, and (d) V.

Fig. 5. Three color features extracted from CIELAB color channels. (a) Input image, and the feature extracted from the channel (b) L, (c) A, and (d) B. (For more
clarity and proper visualization, images (b) and (d) have been normalized).

Fig. 6. Two features extracted from texture components. (a) Input image, (b) Gabor filter, and (c) GLCM.

The main difference between the CGFFCM and the method
presented in [28] and other local feature weighting methods
is in better identification of features that are suitable for the
image segmentation task. Although both the CGFFCM and the
method in [28] identify important features and give them more
weight, the CGFFCM method assigns much accurate weights to
the features. The experiments presented in Section 4 prove this
claim.

Suppose that the three groups of features used in our ap-
proach, i.e., the local homogeneity, the CIELAB color space, and
the texture features, are shown with the following names, respec-
tively: G(1) = {HF}, G(2) = {LabF}, and G(3) = {TF}. A vector
of group weight coefficients called V = [vg ] having the length
of G (here, G = 3) is defined, where vg represents the weight
coefficient of the features in group g .

Also, Eq. (11) shows the objective function used in the CGFFCM
method:

F (U , C ,W , Z) =

N∑
n=1

K∑
k=1

unk
αzpkd

(gw)
nk , (11)

where, d(gw)
nk is a new non-Euclidean distance measure based on

group-local feature weighting and is defined as Eq. (12):

d(gw)
nk =

G∑
g=1

vg
∑

m∈{HF,LabF ,TF}

w
q
km(1 − exp

(
−γm (xnm − ckm)2

)
)

= v1
∑
m∈HF

w
q
km(1 − exp

(
−γm (xnm − ckm)2

)
)

+ v2
∑

m∈LabF

w
q
km(1 − exp

(
−γm (xnm − ckm)2

)
)

6
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+ v3
∑
m∈TF

w
q
km(1 − exp

(
−γm (xnm − ckm)2

)
). (12)

The following constraints are assumed for the objective func-
tion in Eq. (11):

unk ∈ [0, 1] .
K∑

k=1

unk = 1, where 1 ≤ n ≤ N and 1 ≤ k ≤ K ;

zk ∈ [0, 1] .
K∑

k=1

zk = 1, where 1 ≤ k ≤ K ;

vg ∈ [0, 1] .
G∑

g=1

vg = 1, where 1 ≤ g ≤ G;

wkm ∈ [0, 1] .
∑

m∈{HF,LabF ,TF}

wkm = 1,

where 1 ≤ k ≤ K and 1 ≤ m ≤ M.

(13)

The Lagrangian of Eq. (11) with the constraints in Eq. (13) is
Eq. (14):

F̃ =

N∑
n=1

K∑
k=1

unk
αw

q
kmz

p
kd

(gw)
nk − δ

(
K∑

k=1

unk − 1

)

−

G∑
g=1

ψg

⎛⎝ ∑
m∈{HF,LabF ,TF}

wkm − 1

⎞⎠− ω

(
K∑

k=1

zk − 1

)
, (14)

where, δ, ψg and ω stand for the parameters of the Lagrangian
multiplier. By solving the Lagrange equation, the updating equa-
tions for unk, ckm, wkm, and zk are obtained (Eqs. (15) to (18)).

unk =
1∑K

l=1

[
zpk d

(gw)
nk

zpl d
(gw)
nl

] 1
(α−1)

, (15)

ckm =

∑N
n=1 unk

α exp
(
−γm (xnm − ckm)2

)
xnm∑N

n=1 unk
α exp

(
−γm (xnm − ckm)2

) , (16)

wkm =

⎧⎪⎪⎨⎪⎪⎩
1
hm

if Dwkm = 0 and hm = |{s:Dwks = 0}|
0 if Dwkm ̸= 0 but ∃s such that Dwks = 0

1∑
s∈{HF,LabF ,TF}

[
Dwkm
Dwks

] 1
q−1

if Dwks ̸= 0 . ∀1 ≤ s ≤ M,

(17)

where, Dwkm =
∑N

n=1 unk
α(1 − exp

(
−γm (xnm − ckm)2

)
).

zk =

⎧⎪⎪⎨⎪⎪⎩
1
gk

if Dzk = 0 and gk = |{l:Dzl = 0}|
0 if Dzk ̸= 0 but ∃l such that Dzl = 0

1∑K
l=1

[
Dzk
Dzl

] 1
p−1

if Dzl ̸= 0 . ∀1 ≤ l ≤ K,
(18)

where, Dzk =
∑N

n=1 unk
αd(gw)

nk .
Similar to the method presented in [28], to find the appropri-

ate value of p, we apply an iteration-based approach using three
parameters pinit , pstep, and pmax. We start the algorithm using a
small value (pinit ) for p. In each iteration, we increase p as much
as pstep until the maximum value (pmax) is obtained. If an empty
cluster or a cluster with one sample appears, we decrease p by
pstep regardless of whether p equals pmax or not. At this point,
we choose the values of unk, wkm, and zkm corresponding to the
previous p. The algorithm continues until in two successive itera-
tions, the difference between the two objective function values
is less than the threshold value ε, or the number of iterations

reaches the maximum (tmax). The pseudo-code of the algorithm
is presented in Fig. 7.

3.4. Combining CGFFCM with ICA

We use the ICA algorithm to automatically find the optimum
values of the weight coefficients vector (V ) in the CGFFCM al-
gorithm. The algorithm of this process consists of 10 steps, as
follows:

Step 1: Generate an initial population:
The initial population of the coefficient vector is generated

randomly by Eq. (19).

population =

⎡⎢⎢⎢⎣
V 1
V 2
V 3
. . .

V Ninital

⎤⎥⎥⎥⎦
V i = Countryi = [v1, v2, v3] , i = 1, 2, . . . ,Ninital (19)

where, Ninital indicates the number of population, V i is a vector
of length three and represents the country i. Its elements, i.e., v1,
v2, and v3, indicate the weight coefficients of group 1, group 2,
and group 3 (i.e., three groups of features), respectively. Each
of the elements is in the range [0.1, 0.8], where

∑G
g=1 vg = 1.

Considering the range [0.1, 0.8], all groups are assigned with a
weight coefficient greater than zero. In other words, all groups of
features are involved in the clustering process. If the range [0,1]
or [0, 0.9] was selected, in the first case, a zero weight was
assigned for two groups, and in the second case, a zero weight
was given to one group. Assigning zero weight to a group means
that group of features is insignificant and left out in the clustering
process. Based on the experiments (presented in Section 4.7),
considering the range [0.1, 0.8], the lowest weight assigned to
the groups is approximately 0.1. Hence, we can conclude that a
proper range in our algorithm is [0.1, 0.8]. We use this interval
only to create primary countries, so by running the ICA algorithm,
the group(s) may receive zero weight(s).

Step 2: Calculate the objective function value:
We run the CGFFCM algorithm (see Fig. 7) once for each V i

and compute the objective function in Eq. (11) for each V i.

Step 3: Select the imperialists:
The initial population is sorted ascendingly according to their

objective function’s value. Countries with the least objective func-
tion are chosen as imperialists, and the rest are chosen as the
colonies of these imperialists. In our experiments, the number of
empires is considered according to the initial population in the
range Nimp = [10, 20].

Step 4: Select the imperialist states:
The colonies are divided among imperialists according to the

power of each imperialist. This power is calculated by Eqs. (20)
to (22) for each imperialist:

Cn = mini{Ci} − Costn, (20)

Pn =

⏐⏐⏐⏐⏐ Cn∑Nimp
i=1 Ci

⏐⏐⏐⏐⏐ , (21)

Cnorm
n = round {Pn(Ncol)}, (22)

where, Costn is the value of the nth imperial objective function,
and Cn is its normalized value.

Step 5: Move the colonies towards their imperialists:
As explained in Section 2.2, after dividing the colonies among

the imperialists, the colonies move closer to their corresponding
imperialist countries. Fig. 8 shows an example of this movement.
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Fig. 7. The pseudo-code of the CGFFCM algorithm.

Fig. 8. An example movement of a colony towards its imperialist [46].

As shown in this figure, each colony moves a unit towards the
corresponding imperialist and reaches its new position. a is a
random variable with a uniform distribution (see Eq. (23)).

a ∼ U(0, β × S), (23)

where, β (greater than 1) causes the colonies to move in different
directions towards their imperialist, and S is the distance between
the colony and the imperialist. In Ref. [46], it is shown that the
best value to reach the global minimum fastly is β = 2. We also
use this value in our experiments.

However, the colonies do not move exactly straight but de-
viate from the original position with θ angle (see Fig. 9). We
choose this angle randomly and with a uniform distribution (see
Eq. (24)).

θ ∈ U(−γ .γ ), (24)

Fig. 9. An example movement of a colony towards their corresponding
imperialists in a random direction [46].

where, γ is a parameter that adjusts the deviation from the
original direction. Considering the radian unit for θ , a number
close to π/4, is a good choice to reach the global minimum
faster [46].

Step 6: Calculate the cost of all colonies in each empire:
Because the colonies have been placed in a new position, each

colony’s cost may have changed. Thus, we recalculate all colonies’
cost (we run the algorithm in Fig. 7 for each colony again, and
obtain the value of the objective function for each colony). If the

8
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cost of a colony is less than its imperialist, the colony’s position
and the imperialist will exchange.

Step 7: Calculate the total cost of each empire:
The cost of each empire depends on the imperialist power and

its colonies that is calculated by Eq. (25).

TCn = Cost (imperialistn)+ ξmean{Cost(colones of empiren)}, (25)

where, TCn is the total cost of the nth empire, ξ is an attenuation
coefficient in [0,1] to reduce the effect of colonies cost. In our
experiments, the value of ξ is set in the range of ξ = [0.05, 0.5].
A small value for ξ causes the total power of the empire to be
determined by just the imperialist, and increasing it will increase
the role of the colonies in determining the total power of an
empire. Inspired by [46,61], we also use the value of 0.1 in our
experiments.

Step 8: Empires compete:
All empires, according to their power (total cost), try to get the

colonies of the weakest empires (Eqs. (26) and (27)):

TCnorm
n = TCn − maxj{TCj}, (26)

PPn =

⏐⏐⏐⏐⏐ TCnorm
n∑Nimp

j=1 TCnorm
j

⏐⏐⏐⏐⏐ , (27)

where, TCnorm
n is the total normalized cost of the nth empire, and

PPn is the possession probability of each empire.
The roulette wheel is used to select the winning empire ran-

domly. The victorious empire will dominate the weakest colony of
the weakest empire. To perform the roulette wheel, it is necessary
to calculate the cumulative probability (see Eq. (28)).

CPn =

n∑
i=1

PPi , (28)

A random number is then generated with a uniform distri-
bution and compared with all CPn . Each sector with a higher
probability will have more chances to be chosen; thus, the win-
ning empire is determined. As mentioned in using the roulette
wheel, it is necessary to calculate the cumulative distribution.
To reduce this time-consuming step, the following approach is
applied (Eqs. (29) to (31)):

P =

[
PP1 , PP2 , . . . , PPNimp

]
, (29)

R =
[
r1, r2, . . . , rNimp

]
∼ U(0, 1), (30)

D = P − R =
[
D1,D2, . . . ,DNimp

]
=

[
PP1 − r1, PP2 − r2, . . . , PPNimp

− rNimp

]
, (31)

where, P is the vector of possession probability of all empires,
and R is a vector with uniformly distributed random numbers.
The maximum index in D shows the winner empire that gets
the colony. Once the winning empire is determined, the weakest
colony of the weakest empire is given to the winning empire. So
we have to eliminate one of the weak empire populations and
add them to the winning population.

Step 9: Eliminate the weak empires:
If there is an empire without a colony, that empire is elimi-

nated, and its imperialist is given to the best empire.

Step 10: Check the termination condition:
If only one empire remained, stop. Else go to Step 5.
Finally, after the termination of the algorithm, the resulting

clusters are considered as the segments of the input image. The
implementation (source code) of CGFFCM is available at https:
//github.com/Amin-Golzari-Oskouei/CGFFCM.

3.5. Datasets

To evaluate the performance of the proposed method and
compare it with other approaches, we use the benchmark Berke-
ley dataset [48]available at https://github.com/BIDS/BSDS500.git.
Fig. 10 shows some of the images in this dataset and their ground
truths. The set of tested images is also available at https://github.
com/Amin-Golzari-Oskouei/CGFFCM.

3.6. Remarks

The computational complexity of CGFFCM (Algorithm 1), in-
dependent of the ICA optimization and feature extraction steps,
depends on four updating stages: updating membership matrix
U, centers matrix C, weights matrix W, and clusters Z. The com-
putational complexity of each stage is equal to NKM , where
N refers to the number of data samples, K is the number of
clusters, and M is the number of features. Since each stage is
run separately, the overall computational complexity is equal to
t (NMK + NMK + NMK + NMK) = 4tNMK where t is the number
of iterations.

4. Results and discussion

In this section, the performance of the proposed approach is
evaluated. The results are compared with the following methods:
the FCM [62], the robust local feature weighting hard c-means
(RLFWHCM) [43], the fuzzy c-means clustering with the entropy
of feature weight (EWFCM) [42], the fuzzy c-means cluster-
ing method based on feature-weight and cluster-weight Learn-
ing [28], the feature group weighted fuzzy k-harmonic means
(GWFKHM) [17], the feature weighted k-harmonic means
(WKHM) [17], the semi-supervised surrogate-assisted multi-
objective kernel intuitionistic fuzzy clustering (SMKIFC) [20],
the alternate particle swarm optimization based adaptive in-
terval type-2 intuitionistic FCM clustering algorithm (A-PSO-
IT2IFCM) [33], semi-supervised fuzzy clustering algorithm with
spatial constraints [21] (SSFC-SC), kriging-assisted reference vec-
tor guided evolutionary algorithm (KRVEA) [40], feature-
weighted fuzzy c-means-based method (IFWFCM) in [16], cluster-
ing based on the combination of FCM and ICA [36], and clustering
based on the combination of FCM, PSO, and ICA algorithms [35]. In
addition, in this section, the detailed results of the experiments
are provided to demonstrate the effectiveness of the extracted
features in the proposed method. Furthermore, the results of
the experiments related to the effectiveness of the group-local
feature weighting scheme and group weight coefficient vector are
presented.

Parameter ε and the maximum number of iterations are com-
mon in the implemented methods, which are set to 10−5 and
200, respectively. The parameter α in fuzzy algorithms is set to
2. In the proposed algorithm and algorithm in [28], the required
parameters are set as follows: pstep = 0.01, pinit = 0, pmax = 0.5,
and q = 2. The number of color regions (the number of clusters)
for each testing image (introduced in Section 4.1) is the same as
the number of color regions labeled in the dataset.

4.1. Performance metrics

In the experiments, the following three metrics are used to
measure the performance of algorithms.

Accuracy: This metric is used when the cluster’s structure is
determined in the dataset [63], which here are the colored labeled
regions. Accuracy is defined as the number of pixels clustered
correctly divided by the number of all pixels. Accuracy measures
the similarity between the obtained segmentation result and the
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Fig. 10. Sample images from the Berkeley dataset and the corresponding ground truth images.

ground truth. This metric works well when the color regions
are balanced (balanced clusters). This criterion reports incor-
rect results for evaluating imbalanced color regions (imbalanced
clusters). This metric is calculated by Eq. (32).

ACC =

∑K
k=1 dk
N

× 100, (32)

where, dk represents the number of pixels that are correctly
located in the kth colored region. K is the number of clusters
(regions), and N represents the total number of pixels in the
image.

Normalized Mutual Information (NMI): This is a symmetric met-
ric used to measure the common information between two clus-
ters’ (regions) distributions [64]. NMI measures the mutual in-
formation between the obtained segmentation result and the
ground truth. This is a good measure for determining the quality
of clustering. Since it is normalized, we can measure and compare
it between different numbers of color regions. This criterion is
defined by Eq. (33).

NMI (R,Q ) =

∑I
i=1
∑J

j=1 p (i, j) log
p(i,j)

p(i)p(j)
√
H (R)H(Q )

× 100, (33)

where, R and Q are two partitions of the input image, including I
and J regions, respectively. P (i) is the probability that a randomly
selected pixel from the input data is assigned to Ri. P (i, j) is the
probability that a sample belongs to both regions Ri and Qi. H (R)
is the entropy associated with all the probabilities P (i) (1 ≤ i ≤ I)
in partition R.

F-score: This criterion is used to evaluate the segmentation re-
sults quantitatively. F-score provides a way to combine both pre-
cision and recall into a single measure that captures both prop-
erties. We can have excellent precision with terrible recall, or
alternately, terrible precision with excellent recall. F-score pro-
vides a way to express both concerns with a single score. So, this
is the harmonic mean of the two fractions. Unlike the Accuracy
criterion, F-Score is the most common metric used on imbal-
anced problems. Therefore, it is a good criterion for evaluating
imbalanced color regions. This metric is calculated by Eq. (34).

F =
2TP

2TP + FN + FP
× 100, (34)

10
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where, TP , FP , and FN denote the true positive, false positive, and
false negative rates in the segmentation result. A higher value of
the F-score means a better segmentation result.

Performance improvement: This criterion represents the per-
centage of improvement obtained by the proposed method (CGF-
FCM) on each image compared to the other algorithms’ best
result. For each performance metric (i.e., Accuracy, NMI, and F-
score), the performance improvement criterion is calculated sep-
arately by Eq. (35).

Performance improvement =
Rour − Rother

Rother
× 100, (35)

where, Rour is the results of the proposed method, and Rother is the
other algorithms’ best result.

In our experiments, these metrics are expressed as a percent-
age. A high percentage indicates a better performance.

4.2. ICA parameter tuning

Besides the advantages that evolutionary algorithms have,
they usually have several parameters that should be tuned well.
For example, in the ICA algorithm, the number of empires or the
number of initial populations may affect the final result. However,
some parameters have less impact on the final results. In the
proposed method, appropriate values are set for the effective
parameters (such as the number of population and the number
of empires), and for the other parameters, the value proposed in
the main ICA article has been used. In this section, we discuss how
to adjust the number of population and the number of empires
parameters that existed in the ICA algorithm.

Number of population: We run CGFFCM for different popula-
tions in the range [10,150] by step 10. The objective function
values of CGFFCM for the different populations on all tested
images are shown in Fig. 11. In this figure, for each image, the
values of the objective function are normalized between 0 and 1.
As shown in this figure for a small number of populations, the
value of the objective function is very large. As the population
grows, the value of the objective function decreases. This decrease
starts approximately from the population of 70 and continues
until the end. The point is that for more than 100 populations,
the value of the objective function does not decrease significantly.
Therefore, in CGFFCM, the range between 70 and 100 is selected
as the appropriate range for the population. Of course, for some
images, the value of the objective function may not be the lowest
in that range. Our goal is to select the range with the lowest value
of the objective function for all images on average. On average, all
values of the objective functions are high before this interval and
do not decrease significantly after this interval, so we choose the
average population value for CGFFCM. Hence, we can conclude
that a proper value of Ninitial in our algorithm is equal to 85—the
average value of the above-stated range between 70 and 100.

Number of empires: To find the appropriate range for the
number of empires, we perform an experiment similar to the
previous one. In this experiment, we calculate the value of the ob-
jective function for the number of empires in the interval [2,40].
The results are shown in Fig. 12. As the number of empires grows,
the value of the objective function decreases. This decrease starts
approximately from the population of 15 and continues until the
end. The point is that for more than 20 populations, the value of
the objective function does not decrease significantly. Therefore,
in CGFFCM, the range [15,20] is selected as the appropriate range
for the number of empires. On average, all values of the objec-
tive functions are high before this interval and do not decrease
significantly after this interval. Hence, we can conclude that an
acceptable range for N_imp in CGFFCM is [15,20].

4.3. Experiment 1: Results with CIELAB color space

As stated before, CIELAB color space is the most suitable color
space for the clustering-based image segmentation methods [16,
17]. In this experiment, the performance of CGFFCM and seven
other methods, the IFWFCM, WKHM, FCM, EWFCM, RLFWHCM,
[35,36], are evaluated using the only CIELAB color features. The
purpose of this experiment is to evaluate the performance of
CGFFCM, regardless of using the other extracted features (i.e., tex-
ture and local homogeneity). Table 1 compares the results of
different methods. This table shows the Accuracy, NMI, and F-score
rates from top to bottom for each image, respectively. Also, the
percentage of improvement obtained by CGFFCM on each image
compared to the other methods’ best result is shown in Table 1.
The results for the FCM, EWFCM, RLFWHCM, [35,36] methods
have been obtained through our fair implementation, and the
results for WKHM and IFWFCM have been quoted directly from
the relevant publications. In Table 1, the best rates are bold-faced.
Some references did not use the images and criteria to evaluate
the performance of their proposed method. So, for unavailable
values (unreported values), we use the symbol ‘‘-’’ to show that
results are not available for a method. To compare the visual
performance of the methods, the segmentation results of each
method are shown in Fig. 13.

From Table 1 and Fig. 13, it is evident that CGFFCM performs
better than other methods. It performs better for all evaluation
metrics on all images (except the 108073, and 80099). Since
CGFFCM is not sensitive to the selection of initial centers, it can
provide more stable results compared to the other methods.

For images with balanced segmented regions, most of the
compared methods have almost similar results. In such images,
the Accuracy metric is a good metric to show the quality of the
segmentation. In images 113044, 134052, 101027 and 299091 the
average Accuracy of CGFFCM is 83.42%, while for FCM, EWFCM,
RLFWHCM, [35,36] methods, the average Accuracy is 77.03%,
72.67%, 70.83%, 77.95% and 77.18%, respectively.

As stated before, in images with imbalanced segmented re-
gions, the F-score and NMI metrics are appropriate metrics to
show the quality of the segmentation. In images 135069, 238011,
and 3096 (images with imbalanced segmented regions), the av-
erage NMI and F-score metrics of CGFFCM are 80.97% and 86.13%,
respectively. For FCM, EWFCM, RLFWHCM, [35,36] methods, the
average NMI is 52.80%, 70.27%, 58.13%, 76.01%, and 76.26, and
the average F-score is 77.01%, 82.73%, 83.68%, 82.66%, and 82.73%
respectively. These results indicate that for segmenting images
with balanced/imbalanced regions, CGFFCM performs much bet-
ter than the compared methods.

We observe from Fig. 13, the proposed method outperforms
other methods in terms of miss-segmentation of object parts.
For instance, our method successfully segments the ‘‘Moon’’ in
image 238011 and the ‘‘Eagle’’ in image 135069, whereas the FCM
and RLFWHCM methods miss-segment the ‘‘Moon’’ object. Also,
the RLFWHCM method miss-segment the ‘‘Eagle’’ object, too. In
EWFCM, the ‘‘Sky’’ and ‘‘Ground’’ objects, in image 113016, are in
the same segment, while these two parts are completely different
colors. These results reveal that using only the CIELAB color space
feature may not improve the segmentation accuracy. In addition,
such a CIELAB color space feature is not informative enough
to capture essential region information, especially in complex
images with low color contrast.

4.4. Experiment 2: Experiment with all extracted features

In this section, we use all of the extracted features to segment
the images. We compare the results of CGFFCM with six methods:
FCM, EWFCM, RLFWHCM, [28,35,36] in Table 2. This table shows
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Fig. 11. Value of objective function of CGFFCM for different number of populations on all tested images.

Fig. 12. Value of object function of CGFFCM for different number of empires on all tested images.

the Accuracy, NMI, and F-score rates from top to bottom for each
image, respectively. The percentage of improvement obtained by
CGFFCM on each image compared to the other algorithms’ best
result is also reported in Table 2. In addition, to compare the
visual performance of the methods, the segmentation results of
different methods are shown in Fig. 14.

According to Table 2, the feature weighting-based methods
have better results than the metaheuristic-based methods. The
average accuracy of EWFCM, RLFWHCM, [28], and CGFFCM is
92.19, 92.26, 92.64, and 95.02, respectively, while the average
accuracy of metaheuristic-based methods in [35] and [36] is
89.25 and 88.52 respectively. Similarly, for other criteria, two
methods [35,36] have worse results than the feature weighting-
based methods. This is because, in these methods, the problem of
giving equal importance to features remains.

Table 2 and Fig. 14 indicate that FCM cannot precisely segment
some of the regions within specific images. For example, the
moon in image 238011 and background images 108073, 134052,
and 101027. In contrast, CGFFCM can successfully address the
problems as mention earlier. Moreover, the CGFFCM has the best
performance for all images except images 67079, 118035, and
167062. Similar to the CGFFCM, the other feature-weighting-
based methods (i.e., EWFCM, [28], and RLFWHCM) have per-
formed relatively well. The results show that the basic FCM
algorithm has the worst performance. Comparing the results in

Tables 1 and 2, it can be concluded that the combination of
three groups of features applied in our approach has better seg-
mentation results than considering only the CIELAB feature. This
fact confirms the efficiency of the proposed combination of the
features used in our approach.

Moreover, some important points we observe from Fig. 14, as
follows:

(1) The segmentation results of all methods are visually better
than their results using only the color feature (Fig. 13). As stated
earlier, this is mainly because all methods use local homogene-
ity, color space, and texture features to capture essential image
information and segment images with low color contrast and
complex textured patterns. Moreover, using local homogeneity,
color space, and texture features provides additional information,
which can improve the segmentation accuracy.

(2) From the viewpoint of human perception, for images
108073, 113016, 113044, and 134052, the result of CGFFCM
can represent segmented regions of the background correctly,
while the other methods cannot. For complex images with small
unbalanced color regions, such as 135069, 238011, 3096, and
80099, the segmentation results of CGFFCM on the small regions
are better than the other approaches. The cluster weighting
technique also makes the proposed algorithm not sensitive to
non-homogeneous patterns. For instance, the textures of natural
scenes in images 101027, 134052, 108073, and 299091 are non-
uniform (e.g., shadows of the ‘‘Water’’ and ‘‘Leaf’’ regions). We

12



A. Golzari Oskouei, M. Hashemzadeh, B. Asheghi et al. Applied Soft Computing 113 (2021) 108005

Table 1
The Accuracy, NMI, and F-score rates obtained by different methods using the CIELAB color space on each testing image.
Image FCM EWFCM RLFWHCM WKHM IFWFCM [35] [36] Ours

(CGFFCM)
Performance
improvement

108073 81.40
21.02
53.61

79.36
15.78
48.86

80.68
22.72
54.12

46.92
-
-

44.20
-
-

87.55
26.81
60.97

83.26
21.43
54.95

82.52
23.34
55.77

−5.74
−12.94
−8.52

113016 82.57
54.95
82.93

53.01
41.02
54.77

73.32
48.12
75.25

84.68
-
-

59.79
-
-

82.77
55.70
83.03

82.56
54.90
82.93

84.02
58.16
84.86

−0.77
4.41
2.20

113044 83.52
61.87
82.39

73.95
47.42
74.34

59.12
49.83
57.29

82.88
-
-

85.17
-
-

83.50
62.80
82.02

83.50
62.80
82.02

88.14
66.37
88.00

3.48
5.68
6.80

67079 88.55
57.04
90.81

88.65
57.02
90.90

93.50
65.01
95.07

-
-
-

-
-
-

88.55
57.03
90.80

88.54
57.03
90.81

98.48
89.16
98.87

5.32
37.14
3.99

134052 57.73
32.42
53.49

57.53
31.26
57.62

66.15
38.90
67.06

54.77
-
-

52.15
-
-

60.31
32.31
54.60

57.73
32.42
53.49

66.48
39.81
67.10

0.49
2.33
0.05

135069 71.59
12.25
82.45

98.41
69.14
99.17

95.71
24.80
97.77

99.39
-
-

99.39
-
-

99.28
82.58
99.62

99.29
82.66
99.62

99.58
88.62
99.78

0.19
7.21
0.16

238011 88.60
68.36
58.74

88.86
68.42
61.22

90.34
67.91
60.97

88.91
-
-

88.76
-
-

88.62
67.68
58.53

88.60
68.36
58.74

91.72
69.74
64.40

1.52
1.92
5.19

101027 87.76
40.73
78.86

87.65
40.42
78.74

95.75
72.03
92.73

-
-
-

-
-
-

88.24
42.24
79.18

87.76
40.73
78.86

98.12
85.12
96.88

2.47
18.17
4.47

299091 79.13
66.71
78.37

71.58
64.90
54.49

62.33
42.86
57.77

71.62
-
-

71.63
-
-

79.76
67.40
78.94

79.76
67.40
78.94

80.96
68.66
80.03

1.50
1.86
1.38

3096 98.85
77.79
89.84

98.62
73.27
87.80

99.11
81.69
92.30

98.06
-
-

0.9807
-
-

98.85
77.78
89.84

98.85
77.78
89.84

99.31
84.57
94.23

0.20
3.52
2.09

80099 99.62
90.73
96.91

99.62
90.45
96.90

98.07
64.61
82.04

99.65
-
-

99.65
-
-

99.66
91.34
97.25

99.67
91.42
97.29

99.66
91.26
97.23

−0.01
−0.17
−0.06

118035 95.23
80.21
95.34

95.32
80.36
95.32

91.87
72.54
86.26

-
-
-

-
-
-

95.22
80.20
95.34

95.22
80.20
95.34

96.52
83.54
96.27

1.25
3.95
0.97

167062 89.63
79.12
67.27

95.10
85.04
72.61

93.07
82.43
70.41

-
-
-

-
-
-

95.54
85.70
73.37

95.54
85.70
73.37

95.62
85.76
73.29

0.08
0.07
−0.10

observe that all methods have unsatisfactory segmentation per-
formance, whereas CGFFCM performs well in segmenting noisy
non-homogeneous regions.

(3) It is evident from Fig. 14 and Table 2, all feature-weighted
methods (i.e., EWFCM, RLFWHCM, [28], and CGFFCM) are visually
and quantitatively better than the FCM, [35,36] methods. Also, the
results imply that the feature weighting schema used in other
methods increases the segmentation results less than CGFFCM.
This is explained by the fact that in the proposed group-local fea-
ture weighting technique, the optimal weights of groups and sub-
features are obtained, which directly affects the segmentation
results.

4.5. Experiment 3: The effect of group-local feature weighting scheme

To investigate the effect of the group-local feature weight-
ing scheme used in our approach on the final image segmen-
tation quality, we evaluate the performance of the proposed
approach once with group-local feature weighting (proposed al-
gorithm) and once without group-local feature weighting. In the
case of without group-local feature weighting, we assign the same
weights to all features in each cluster and each group. These
weights are fixed during the algorithm run and are not updated.
Fig. 15 shows the results of this experiment on different images
in terms of the Accuracy metric. Also, to compare the visual

performance of both cases, we compare the segmentation results
in Fig. 16.

As shown in Figs. 15 and 16, the proposed approach has
much better performance with the group-local feature weighting
technique than without weighting mode. By using the group-local
feature weighting, the Accuracy rate of the proposed approach is
improved by an average of 12% on all testing images. For some
images, such as 134052, 135069, and 167062, the effect of the
group-local feature weighting technique is more significant than
other images. As shown in Fig. 16, in the case of without group-
local feature weighting, serious miss-segmentation is caused in
background regions. In addition, in image 167062, the ‘‘Wolf’’
object is not correctly segmented. It is quite clear that in the
second case, these problems are mainly solved, and segmentation
results are improved. In these images, only one group of features
(or sub-features) is very important, and using these features is
enough to achieve better results. Incorporating all the features
equally (without group-local feature weighting technique) dra-
matically reduces the quality of segmentation. Therefore, it can
be concluded that by using the group-local feature weighting
technique, the important features are better recognized, and as
a result, the quality of the segmentation is better.
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Fig. 13. Comparison of the performance of the proposed approach with other methods using the CIELAB color space. Results obtained by (a) FCM, (b) EWFCM, (c)
RLFWHCM, (d) [35], (e) [36], and Ours (CGFFCM).
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Table 2
The Accuracy, NMI, and F-score rates obtained by different methods using all three extracted features on each testing image.
Image FCM EWFCM RLFWHCM [28] [35] [36] Ours

(CGFFCM)
Performance
improvement

108073 81.71
21.65
54.19

93.10
48.88
77.20

82.48
17.06
51.13

94.24
52.31
79.78

88.43
28.61
62.65

83.61
22.10
55.61

95.40
60.14
84.05

1.23
14.96
5.35

113016 83.03
55.51
83.40

90.16
70.99
90.46

87.05
63.21
86.53

90.28
65.87
90.03

83.10
56.06
83.80

82.94
55.33
83.35

92.74
72.74
92.72

2.72
2.46
2.49

113044 84.87
63.52
83.84

94.84
80.22
94.68

82.03
62.83
79.44

89.94
69.20
89.24

84.79
63.31
83.78

84.79
63.31
83.87

96.08
83.27
96.06

1.30
3.80
1.47

67079 88.61
57.17
90.87

88.75
57.27
90.99

98.31
88.28
98.74

95.91
77.57
96.90

88.61
57.17
90.86

88.61
57.17
90.87

98.48
89.16
98.87

0.17
0.99
0.13

134052 57.88
33.28
54.29

76.12
41.47
71.92

69.90
38.13
70.09

80.95
49.80
80.86

60.89
32.75
55.40

57.88
33.28
54.29

83.09
51.98
82.32

2.64
4.37
1.80

135069 99.29
82.67
99.63

99.23
81.21
99.59

99.50
87.01
99.74

96.12
31.32
97.98

99.32
83.30
99.65

99.32
83.34
99.64

99.59
88.62
99.78

0.09
1.85
0.04

238011 88.62
67.69
58.53

95.54
73.31
64.50

90.42
68.84
62.80

95.63
71.49
94.14

95.03
71.94
94.78

94.91
71.53
94.60

96.06
74.15
92.86

0.44
1.14
−2.05

101027 88.33
42.50
79.73

88.30
42.39
79.65

97.92
84.46
96.59

96.58
76.16
94.19

88.75
43.95
79.98

88.33
42.50
79.73

98.32
86.29
97.20

0.40
2.16
0.63

299091 79.84
67.13
79.01

80.73
67.38
79.79

72.37
60.95
57.68

74.32
60.93
74.11

79.97
66.95
78.24

78.97
66.95
78.24

81.99
69.83
80.96

1.56
3.63
1.46

3096 98.97
79.42
90.91

98.84
77.11
89.90

99.14
82.08
92.60

99.12
81.26
92.92

98.97
79.42
90.91

98.97
79.42
90.91

99.46
87.19
95.60

0.32
6.22
2.88

80099 99.66
91.38
97.27

99.68
91.66
97.37

99.68
91.66
97.37

98.71
74.23
88.63

99.65
91.18
97.17

99.62
90.79
96.97

99.68
91.66
97.37

0
0
0

118035 95.29
80.32
95.36

95.38
80.53
95.37

97.04
84.71
96.67

94.65
78.86
90.97

95.28
80.31
95.36

95.28
80.31
95.36

96.52
83.21
95.89

−0.53
−1.77
−0.80

167062 95.55
85.71
73.37

97.92
90.24
79.38

97.62
89.86
80.24

97.87
90.15
79.32

97.54
89.63
79.10

97.54
89.63
79.10

97.91
90.35
80.35

−0.01
0.12
0.13

4.6. Experiment 4: Effect of the group weight coefficient vector

In order to investigate the effect of the group weight coeffi-
cient vector (V ) on the image segmentation results, we run the
proposed algorithm for each image 15 times and obtained the
average weight for each group (G(1) = {HF}, G(2) = {LabF},
and G(3) = {TF}). The obtained results are compared in Fig. 17.
This figure shows that on images 113044, 67079, 135069, 101027,
299091, 3096, and 80099, the weight of group 2 is higher than
other groups, and on images 108073, 113016, 134052, 238011,
118035, and 167062, the weight of groups 1 and 3 is higher than
group 2. Upon further investigation, we find that on images with
more details and colored regions, the weight of group 1 and group
3 is high, and on images with fewer details and colored regions,
the weight of group 2 is high. In fact, in highly detailed images
with color regions, the HF and TF features are more important
and crucial in the image segmentation process. In contrast, in
images with low detail and colored regions, the CIELAB feature
is much more important. Therefore, it is necessary to consider
appropriate weights for each group of extracted features during
the clustering process, according to the structure and details
of the under-process image. This important aim is achieved in

the proposed approach by automatically determining the group
weight coefficients vector V .

In the ICA optimization process, no specific range is applied
to the weights, and the weight of a group can be even zero.
However, for each image, the optimal weights obtained for each
group are greater than zero. This shows that all groups have a
positive effect on the final result. In all images, except 67079, the
minimum weight obtained is approximately 0.1.

4.7. Experiment 5: Comparison of CGFFCM with state-of-the-art
methods

In this section, the performance of CGFFCM is compared with
other successful clustering-based image segmentation methods
(i.e., the SMKIFC, A-PSO-IT2IFCM, SSFC-SC, KRVEA, [28], and
GWFKHM). The performance of the different methods is shown in
Table 3. This table shows the Accuracy, NMI, and F-score rates from
top to bottom for each image, respectively. Also, the percentage
of improvement obtained by the proposed algorithm on each
image compared to the other algorithms’ best result is reported
in Table 3. The results of other methods, except [28], have been
quoted directly from the relevant publications.
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Fig. 14. Comparison of the performance of the proposed approach with other methods using all the extracted features. Results obtained by (a) FCM, (b) EWFCM, (c)
RLFWHCM, (d) [28], (e) [35], (f) [36], and (e) Ours (CGFFCM).

As shown in Table 3, CGFFCM has the best performance for
all images except 238011 and 167062. In these two images,
the method SMKIFC performs better than CGFFCM in terms of
Accuracy and NMI, but CGFFCM has a higher F-score than SMKIFC.
In other images, CGFFCM provides better results than SMKIFC.
Generally, the results show that CGFFCM has a higher perfor-
mance than other successful methods in this field. After CGFFCM,

the [28], SMKIFC, A-PSO-IT2IFCM, and GWFKHM have relatively
good performance.

Table 4 shows the average results for CGFFCM and other
compared algorithms. As shown in this table, CGFFCM has the
best results. In terms of Accuracy criteria, after CGFFCM, the
methods SMKIFC, A-PSO-IT2IFCM, KRVEA, GWFKHM, and SSFC-
SC have better results, respectively. In terms of NMI criteria, after
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Fig. 15. Effect of the group-local feature weighting on the image segmentation quality in terms of the Accuracy rate on different images.

Fig. 16. Effect of the group-local feature weighting on the image segmentation quality. Results obtained by (a) proposed approach without group-local feature
weighting, and (b) proposed approach with group-local feature weighting.

CGFFCM, the methods [28], A-PSO-IT2IFCM, SMKIFC, KRVEA, and
SSFC-SC, have better results, respectively. Also, In terms of F-score
criteria, after CGFFCM, methods [28], SMKIFC, KRVEA, and SSFC-
SC have better results, respectively. Methods A-PSO-IT2IFCM and

SMKIFC have almost high performance in terms of Accuracy cri-

terion and have similar accuracy to CGFFCM. However, in terms

of NMI, and F-score criteria are much lower than CGFFCM. This
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Fig. 16. (continued).

shows that these methods are not able to segment those images
with imbalanced color regions properly.

4.8. Experiment 6: CGFFCM runtime and comparison with the base-
line method

In this section, the runtime of CGFFCM is compared with the
baseline algorithm presented in [28]. The running time reported
for both methods is only the clustering time. The experiments
are conducted on a computer with Intel corei7-4700HQ, CPU
2.40 GHz, and 8 GB RAM in MATLAB2016b environment. The
runtime of both algorithms is reported in Table 5. For each image,
each method is executed 10 times, and the average running time
is reported. As shown in Table 5, the running time of CGFFCM for

images 108073, 113044, 67079, 134052, 238011, 299091, 80099,
118035, and 167062 is less than the compared method. CGFFCM
is a little slower than the method in [28] for images 113016,
135069, 101027, and 3096, but according to Table 3, CGFFCM has
a much better performance than [28] in these images. The average
runtime for all images in CGFFCM and the compared method is
24.86 and 25.91, respectively.

4.9. Experiment 7: Analysis of the behavior of the objective function

In this section, we aim to investigate the behavior of the
objective function on all tested images. To this end, we illustrate
the value of the objective function during the algorithm iterations
(Fig. 18) to show how the proposed algorithm alternates between
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Fig. 17. Effect of the group weight coefficient vector on the image segmentation quality in terms of the Accuracy rate on different images.

Table 3
Comparison of the Accuracy, NMI, and F-score rates of the proposed approach with other state-of-the-art methods.
Image GWFKHM A-PSO-

IT2IFCM
SMKIFC SSFC-SC KRVEA [28] Ours

(CGFFCM)
Performance
improvement

108073 60.47
-
-

-
-
-

-
-
-

-
-
-

-
-
-

94.24
52.31
79.78

95.40
60.14
84.05

1.23
14.9
5.35

113016 93.77
-
-

89.35
42.35
-

89.82
43.97
41.62

87.61
37.94
41.40

88.47
43.80
41.32

90.28
65.87
90.03

92.74
72.74
92.72

−1.09
10.42
2.98

113044 95.89
-
-

-
-
-

96.17
76.01
84.54

83.96
33.44
37.00

68.70
5.43
34.85

89.94
69.20
89.24

96.08
83.27
96.06

−0.09
9.55
7.64

67079 -
-
-

83.08
45.09
-

86.60
47.73
70.71

82.67
44.39
69.97

83.72
45.29
71.14

95.91
77.57
96.90

98.48
89.16
98.87

2.67
14.94
2.03

134052 68.33
-
-

-
-
-

-
-
-

-
-
-

-
-
-

80.95
49.80
80.86

83.09
51.98
82.32

2.64
4.37
1.80

135069 99.58
-
-

99.18
81.22
-

99.46
86.05
73.76

59.49
37.17
49.22

99.27
82.24
77.96

96.12
31.32
97.98

99.59
88.62
99.78

0.01
2.98
1.83

238011 85.48
-
-

95.54
72.83
-

96.38
74.35
85.73

95.40
72.41
85.92

95.65
73.21
85.29

95.63
71.49
94.14

96.06
74.15
92.86

−0.33
−0.26
−1.35

101027 -
-
-

88.90
45.97
-

92.66
60.29
76.50

88.57
45.03
69.05

86.02
41.06
71.30

96.58
76.16
94.19

98.32
86.29
97.20

1.80
13.30
3.19

299091 93.68
-
-

-
-
-

-
-
-

-
-
-

-
-
-

74.32
60.93
74.11

81.99
69.83
80.96

−12.47
14.60
9.24

3096 98.33
-
-

98.83
74.81
-

-
-
-

-
-
-

-
-
-

99.12
81.26
92.92

99.46
87.19
95.60

0.34
7.29
2.88

80099 95.59
-
-

-
-
-

93.40
21.19
36.74

86.33
6.57
35.43

92.92
0.02
33.80

98.71
74.23
88.63

99.68
91.66
97.37

0.98
23.48
9.86

118035 -
-
-

93.51
76.74
-

94.11
77.50
71.81

93.38
69.78
75.58

93.85
76.02
70.16

94.65
78.86
90.97

96.52
83.21
95.89

1.97
5.51
5.40

167062 -
-
-

98.56
90.72
-

98.08
92.14
59.85

97.95
90.05
58.15

95.45
84.86
57.08

97.87
90.15
79.32

97.91
90.35
80.35

−0.65
−1.94
1.29

Table 4
The average performance of CGFFCM and other state-of-the-art methods.
Metrics GWFKHM A-PSO-IT2IFCM SMKIFC SSFC-SC KRVEA [28] Ours (CGFFCM)

Accuracy 87.90 93.36 94.07 86.11 89.33 92.64 95.03
NMI - 66.21 64.35 48.53 50.21 67.26 79.12
F-score - - 66.80 57.96 60.32 88.39 91.84
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the U , C , W , and Z optimization steps to get a local optimum of
F .

As shown in Fig. 18, the value obtained for the objective
function is reduced in the initial iterations markedly. Finding
the suitable cluster centers in the initial iterations is the rea-
son for such behavior. For all tested images except 3096 and
80099, the value of the objective function has been significantly
reduced from first to 20th iterations, and there are, however,
slight decreases from iterations 20th to the end. This shows that
the proposed algorithm achieves a nearly optimal solution in the
initial iterations. Also, the proposed method is optimized for im-
ages 101027, 118035, 167062, 108073, 113016, 113044, 135069,
and 134052 in the 52nd iteration, for images 238011, 3096, and
67079 in the 53rd iteration, and for images 299091 and 80099
in the 58th and 59th iteration, respectively. By performing the
group-local feature weighting along with the cluster weighting in
a concurrent manner, the algorithm achieves an optimal solution
very fast, irrespective of the initialization.

5. Conclusion

In this study, we presented a new method, termed CGFFCM
(Cluster-weight and Group-local Feature-weight learning in Fuzzy
C-Means), for color image segmentation based on the FCM clus-
tering algorithm. During the color image segmentation process,
we used a group-local feature weighting scheme and a clus-
ter weighting strategy to have better results. All weights, in-
cluding the group-local weights of features and the clusters’
weights, were calculated automatically and simultaneously dur-
ing the learning process. We also used an efficient combination
of image features, including the local homogeneity, CIELAB, and
texture, to improve image segmentation. The group-local feature
weighting scheme caused better application of the features, and
on the other hand, the weighting of clusters reduced the algo-
rithm’s sensitivity to the initialization issue. So better segmen-
tation results were obtained for various images. A combination
of the ICA meta-heuristic algorithm with the proposed clustering
algorithm was used to find the optimal group weight of features.

The performance of CGFFCM was examined and confirmed by
extensive experiments. The results of the experiments confirmed
the positive effects of the group-local feature weighting scheme
and group weight coefficient vector in the proposed approach.
The Berkeley benchmark image dataset, including different col-
ored regions and various imbalance and balance regions, was
used to examine the efficiency of the proposed solutions. The per-
formance metrics of Accuracy, NMI, F-score were used to compare
the results with state-of-the-art clustering-based image segmen-
tation methods. The comparisons showed that CGFFCM has signif-
icantly better performance, especially when dealing with complex
imbalanced colored region images. Also, the investigations on
the effectiveness of solutions used in the proposed approach
confirmed the positive effects of all solutions. In addition, the
proposed method performed well in terms of running time.

CGFFCM has two limitations that can be mitigated in future
research. The first limitation is that it requires the number of
clusters (colored regions), similar to most of the existing cluster-
ing methods. The number of clusters must be known in advance.
However, in real-world applications, the number of clusters is
often unknown. Thus, we are interested in the automatically de-
termining of the number of cluster regions during the clustering
process. The second limitation is that in segmenting complex im-
ages such as medical and SAR (Synthetic-Aperture Radar) images,
we need to extract other types of features. The three features
used in this study are often not suitable for clustering medical and
SAR images. Thus, as a future direction, it is of interest to further
develop the CGFFCM to segment the medical and SAR images.

Table 5
Runtime comparison of CGFFCM with baseline method in [28].
Image [28] Ours (CGFFCM)

108073 18.93 18.01
113016 28.11 29.18
113044 33.18 30.10
67079 20.56 18.36
134052 32.21 29.57
135069 17.25 18.28
238011 31.23 30.93
101027 17.99 18.40
299091 34.01 32.18
3096 18.73 18.24
80099 21.78 20.19
118035 31.12 29.42
167062 31.75 30.35
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Appendix

Here, we present how the updating equation for the mem-
bership function unk is obtained from the Lagrange F̃ equation
(Eq. (14)). The steps are as follows:

∂ F̃
∂unk

= 0

αunk
α−1zpkd

(gw)
nk − δ = 0

unk =

[
δ

αzpkd
(gw)
nk

] 1
α−1

. (A.1)

Now, we just have to get the value of δ. To this end, we
proceed as follows:

∂ J̃
∂unl

= 0 ⇒ δ = αunl
α−1zpl d

(gw)
nl , (A.2)

We conclude from Eqs. (A.1) and (A.2):

unk =

[
αunl

α−1zpl d
(gw)
nl

αzpkd
(gw)
nk

] 1
α−1

unk = unl

[
zpl d

(gw)
nl

zpkd
(gw)
nk

] 1
α−1

unl = unk

[
zpkd

(gw)
nk

zpl d
(gw)
nl

] 1
α−1

⇒

K∑
l=1

unl =

K∑
l=1

unk

[
zpkd

(gw)
nk

zpl d
(gw)
nl

] 1
α−1

.

(A.3)
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Fig. 18. The value of the objective function along the algorithm iterations on each testing image (a) 108073, (b) 113016, (c) 113044, (d) 67079, (e) 134052, (f)
135069, (g) 238011, (h) 101027, (i) 29909, (j) 3096, (k) 8099, (l) 118035, (m) 167062.

Given that
∑K

l=1 unl = 1, we can write the Eq. (A.3) as follows
(see Eq. (A.4)):

1 = unk

K∑
l=1

[
zpkd

(gw)
nk

zpl d
(gw)
nl

] 1
α−1

⇒ unk =
1∑K

l=1

[
zpk d

(gw)
nk

zpl d
(gw)
nl

] 1
α−1

. (A.4)

Thus, the membership function (Eq. (15)) is obtained.
Now, we describe the steps to obtain the ckm:

∂ F̃
∂ckm

= 0 ⇒

N∑
n=1

G∑
g=1

2unk
αzpkvgw

q
km (−γm) (xnm − ckm)
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×
(
exp

(
−γm (xnm − ckm)2

))
= 0. (A.5)

We can express the Eq. (A.5) as follows:

N∑
n=1

G∑
g=1

2unk
αzpkvgw

q
km (−γm) xnm

(
exp

(
−γm (xnm − ckm)2

))
−

N∑
n=1

G∑
g=1

2unk
αzpkvgw

q
km (−γm) ckm

(
exp

(
−γm (xnm − ckm)2

))
= 0

2wq
kmz

p
k (−γm)

N∑
n=1

G∑
g=1

unk
αvgxnm

(
exp

(
−γm (xnm − ckm)2

))
− 2wq

kmz
p
k (−γm) (ckm)

N∑
n=1

G∑
g=1

unk
αvg

(
exp

(
−γm (xnm − ckm)2

))
= 0

ckm =

∑N
n=1 unk

α
(
exp

(
−γm (xnm − ckm)2

))
xnm

∑G
g=1 vg∑N

n=1 unk
α
(
exp

(
−γm (xnm − ckm)2

))∑G
g=1 vg

=

∑N
n=1 unk

α exp
(
−γm (xnm − ckm)2

)
xnm∑N

n=1 unk
α exp

(
−γm (xnm − ckm)2

) .

Assuming
∑G

g=1 vg = 1, the cluster center updating function
(Eq. (16)) is obtained.

Concerning wkm, if Dwkm = 0 and hm is the number of features
such as s for which Dwks is zero, then wkm is defined as 1

hm
. By

contrast, if Dwkm ̸= 0, and if there is a feature like s for which
Dwks is zero, the value of wkm will be zero. If there is no feature
such as s for which Dwks is zero, then we can calculate the value
of wkm as follows:

∂ F̃
∂wkm

= 0 ⇒

N∑
n=1

G∑
g=1

unk
αzpkvgqw

q−1
km (1 − exp

(
−γm (xnm − ckm)2

)
) − ψ = 0

wkm =

[
ψ

qwq−1
km zpk

∑N
n=1 unk

α(1 − exp
(
−γm (xnm − ckm)2

)
)
∑G

g=1 vg

] 1
q−1

.

(A.6)

Now, we just have to get the value of ψ . To this end, we
proceed as follows:

∂ F̃
∂wks

= 0

ψ =

N∑
n=1

G∑
g=1

unk
αzpkvgqw

q−1
ks (1 − exp

(
−γs (xns − cks)2

)
)

ψ = qwq−1
ks zpk

N∑
n=1

unk
α(1 − exp

(
−γs (xns − cks)2

)
)

G∑
g=1

vg . (A.7)

We conclude from Eqs. (A.6) and (A.7):

wkm =

[
qwq−1

ks zpk
∑N

n=1 unk
α(1 − exp

(
−γs (xns − cks)2

)
)
∑G

g=1 vg

qwq−1
km zpk

∑N
n=1 unk

α(1 − exp
(
−γm (xnm − ckm)2

)
)
∑G

g=1 vg

] 1
q−1

wkm = wks

[ ∑N
n=1 unk

α(1 − exp
(
−γs (xns − cks)2

)
)
∑G

g=1 vg∑N
n=1 unk

α(1 − exp
(
−γm (xnm − ckm)2

)
)
∑G

g=1 vg

] 1
q−1

wks = wkm

[∑N
n=1 unk

α(1 − exp
(
−γm (xnm − ckm)2

)
)
∑G

g=1 vg∑N
n=1 unk

α(1 − exp
(
−γs (xns − cks)2

)
)
∑G

g=1 vg

] 1
q−1

∑
s∈{HF,LabF ,TF}

wks

=

∑
s∈{HF,LabF ,TF}

wkm

[∑N
n=1 unk

α(1 − exp
(
−γm (xnm − ckm)2

)
)
∑G

g=1 vg∑N
n=1 unk

α(1 − exp
(
−γs (xns − cks)2

)
)
∑G

g=1 vg

] 1
q−1

.

(A.8)

Given that
∑

s∈{HF,LabF ,TF}
wks = 1, we can express the Eq. (A.8)

as follows:

1 =

∑
s∈{HF,LabF ,TF}

wkm

[∑N
n=1 unk

α(1 − exp
(
−γm (xnm − ckm)2

)
)
∑G

g=1 vg∑N
n=1 unk

α(1 − exp
(
−γs (xns − cks)2

)
)
∑G

g=1 vg

] 1
q−1

wkm =
1∑

s∈{HF,LabF ,TF}

[∑N
n=1 unkα (1−exp(−γm(xnm−ckm)2))

∑G
g=1 vg∑N

n=1 unkα (1−exp(−γs(xns−cks)2))
∑G

g=1 vg

] 1
q−1

=
1∑

s∈{HF,LabF ,TF}

[∑N
n=1 unkα (1−exp(−γm(xnm−ckm)2))∑N
n=1 unkα (1−exp(−γs(xns−cks)2))

] 1
q−1

.

Assuming
∑G

g=1 vg = 1, the feature weight updating function
(Eq. (17)) is obtained.

Concerning zk, if Dzk = 0 and gk is the number of clusters such
as l for which Dzl is zero, then zk is defined as 1

gk
. By contrast, if

Dzk ̸= 0, and if there is a cluster like l for which Dzl is zero, the
value of zk will be zero. If there is not a cluster such as l for which
Dzl is zero, then we can calculate the value of zk as follows:

∂ F̃
∂zk

= 0 ⇒

N∑
n=1

unk
αpzp−1

k d(gw)
nk − ω = 0

zk =

[
ω

p
∑N

n=1 unk
αd(gw)

nk

] 1
p−1

. (A.9)

Now, we just have to get the value of ω. To do this, we proceed
as follows:

∂ F̃
∂zl

= 0

ω =

N∑
n=1

unl
αpzp−1

l d(gw)
nl

ω = pzp−1
l

N∑
n=1

unl
αd(gw)

nl . (A.10)

We conclude from Eqs. (A.9) and (A.10):

zk =

[
zp−1
l

∑N
n=1 unl

αd(gw)
nl∑N

n=1 unk
αd(gw)

nk

] 1
p−1

zk = zl

[∑N
n=1 unl

αd(gw)
nl∑N

n=1 unk
αd(gw)

nk

] 1
p−1

zl = zk

[∑N
n=1 unk

αd(gw)
nk∑N

n=1 unl
αd(gw)

nl

] 1
p−1

⇒

K∑
l=1

zl =

K∑
l=1

zk

[∑N
n=1 unk

αd(gw)
nk∑N

n=1 unl
αd(gw)

nl

] 1
p−1

.

(A.11)

Given that
∑K

l=1 zl = 1, we can express the Eq. (A.11) as
follows:

1 = zk
K∑
l=1

[∑N
n=1 unk

αd(gw)
nk∑N

n=1 unl
αd(gw)

nl

] 1
p−1

zk =
1∑K

l=1

[∑N
n=1 unkαd

(gw)
nk∑N

n=1 unlαd
(gw)
nl

] 1
p−1
.

Thus, the cluster weight function (Eq. (18)) is obtained.
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