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Rapid diagnosis of COVID-19 with high reliability is essential in the early stages. To this end, recent research often uses medical
imaging combined with machine vision methods to diagnose COVID-19. However, the scarcity of medical images and the
inherent differences in existing datasets that arise from different medical imaging tools, methods, and specialists may affect the
generalization of machine learning-based methods. Also, most of these methods are trained and tested on the same dataset,
reducing the generalizability and causing low reliability of the obtainedmodel in real-world applications.)is paper introduces an
adversarial deep domain adaptation-based approach for diagnosing COVID-19 from lung CTscan images, termed ADA-COVID.
Domain adaptation-based training process receives multiple datasets with different input domains to generate domain-invariant
representations for medical images. Also, due to the excessive structural similarity of medical images compared to other image
data in machine vision tasks, we use the triplet loss function to generate similar representations for samples of the same class
(infected cases). )e performance of ADA-COVID is evaluated and compared with other state-of-the-art COVID-19 diagnosis
algorithms. )e obtained results indicate that ADA-COVID achieves classification improvements of at least 3%, 20%, 20%, and
11% in accuracy, precision, recall, and F1 score, respectively, compared to the best results of competitors, even without directly
training on the same data. )e implementation source code of the ADA-COVID is publicly available at https://github.com/
MehradAria/ADA-COVID.

1. Introduction

Nearly 268 million people worldwide officially have been
infected with the COVID-19, and more than 5.2 million
death tolls until November 2021 [1] as of epidemic decla-
ration in March 2020 signify the rapid diagnosis of the
COVID-19 with high reliability in the early stages, not only
to save human lives but also to reduce the social and eco-
nomic burden on the communities involved. Although the
RT-PCR (real-time polymerase chain reaction) test is the
standard reference for confirming COVID-19, some studies
show that this laborious method cannot diagnose the disease
in the early stages [2–5], and some studies report a high
false-negative rate [6].

One standard way to identify morphological patterns of
lung lesions associated with COVID-19 is to use chest scan
images. )ere are two common techniques for scanning the
chest: X-rays and computer tomography (CT). Detection of
COVID-19 from chest images by a radiologist is time-
consuming, and the accuracy of COVID-19 diagnosis de-
pends strongly on the radiologist’s opinion [7, 8]. Also,
manually checking every image might not be feasible in
emergency cases. Recently, deep learning-based methods
[9, 10] have been applied to help the medical community
diagnose COVID-19 quickly, accurately, and automatically.

Using CT images to diagnose COVID-19 has recently
drawn researchers’ interest due to some key ideas that they
possess: more accurate images of bones, organs, blood
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vessels, and soft tissues. Using these images, radiologists can
better identify internal structures in more detail and evaluate
their texture, density, size, and shape. Chest images obtained
by CT scan usually provide much more accurate images of
the patient’s condition than X-rays. )erefore, in recent
works based on deep learning, CTscan images are used more
than plain radiographs [11–14].

Deep learning-based methods usually require large
datasets to achieve better results and overcome overfitting
[15]. In the accurate detection of COVID-19 using chest
images, the lack of comprehensive, high-quality datasets is a
fundamental problem in this research area. )e COVID CT
dataset was first introduced in [16] and has been used in
recent works [11–13].)e next SARS-CoV-2 CTscan dataset
[17] contains 2,482 CT scan images collected from hospitals
in São Paulo, Brazil. Another large dataset includes 7495
positive corona samples and 944 negative ones [18]. )e
mentioned datasets are the largest and most common
datasets used in this field, while researchers also use other
small public datasets [19–21].

It is observed that obtained evaluation results on test
samples belonging to the same dataset used for training are
significantly better than other datasets [22]. In other words,
model performance is artificially good when the train and
test sets belong to the same dataset. At the same time, model
performance is dramatically reduced when the trained
model is evaluated on another dataset. Numerous studies
demonstrate that the most recent approaches in the liter-
ature are unreliable [23, 24]. For example, two well-known
studies [10, 25] in this field show a performance close to
random classification facing unseen data (i.e., datasets on
which the model has not been trained). For example, the
classification accuracy in research [22] decreases from 98.5%
on the test set to 59.12% on unseen datasets. )e structural
and inherent differences in the images from the available
datasets, which arise from different tools and medical im-
aging methods, are the cause of this issue. Upon closer
inspection, we found that most of the proposed methods for
detecting and classifying COVID-19 are trained and tested
on a set of images from the same dataset. Using a single
dataset during network training reduces the model gener-
alization. One of the fundamental problems of deep learning
is shortcut learning [26]. Decision rules that perform well on
typical benchmarks but fail to transfer to more complex
testing situations, such as real-world scenarios, are examples
of shortcuts [26].

)is paper proposes an adversarial deep domain adap-
tation-based approach for diagnosing COVID-19 from lung
CT scan images, termed ADA-COVID. In ADA-COVID,
two datasets with different input domains are used in the
network training process. )e goal is to generate similar
representations for images belonging to two different do-
mains. )is model can perform the correct classification
regardless of the specific features of each input distribution.
In other words, the generated representations are domain
invariant, and overall better representations are generated.
Also, due to the excessive structural similarity of medical
images compared to other image data in machine vision, we
use the triplet loss function for the trainingmodel. Using this

loss function, similar (dissimilar) representations are gen-
erated for samples of the same class (different classes) in the
embedded space.

)e contributions of this work are twofold:

(1) )e effect of structural and intrinsic differences in
images obtained from different medical imaging
tools and methods is minimized as a result of the
introduced domain adaptation-based approach for
CT images.

(2) A custom deep model is designed based on this
approach to make corona case detection more re-
liable. )erefore, the generalization of the ADA-
COVID for other new datasets and in the real-world
application is high.

)e performance of the ADA-COVID method is eval-
uated on two standard datasets, and extensive experiments
are performed to examine the effectiveness of each solution
proposed. )e results show that our approach achieves
higher performance than the existing competitors.

)e rest of the paper is organized as follows. Section 2
gives a brief review of the related work; in Section 3, the
proposed ADA-COVID is described in detail. In Section 4,
the experimental results are presented. In Section 5, the
conclusions and possible future works are discussed.

2. Related Work

With the prevalence of COVID-19, various methods were
introduced to diagnose COVID-19 [14, 27–29]. )ese
methods can be classified into three general categories: (1)
methods that have developed customized network archi-
tectures specifically for COVID-19 detection, such as
COVID-Net [10], COVID CT-Net [30], and CVR-Net [31],
(2) methods that use pretrained networks and transfer
learning to detect COVID-19, such as COVID-ResNet [32],
CoroNet [33], COVID-CAPS [25], and convolutional
CapsNet [34], and (3) very few studies employed hand-
crafted feature extraction approaches and conventional
classifiers. In the following, we review each of these
categories.

2.1. Methods Based on Customized Network Architectures.
COVID-Net [10] is one of the earliest methods based on
convolutional neural networks designed to detect COVID-
19 using X-ray images. CVR-Net (Coronavirus Recognition
Network) [31] is a customized model with convolutional
layers trained and tested on a combination of CT and X-ray
images. In CVR-Net, an average accuracy of 78% was re-
ported for the CT image dataset. Further improvements were
added to COVID-Net to improve its representational ability
for one specific image modality and to make the network
computationally more efficient [35]. CovidCTNet [36] is a
set of open-source algorithms used to differentiate COVID-
19 from community-acquired pneumonia (CAP) and other
lung diseases. )e aim of designing this model is to work
with heterogeneous and small sample sizes independent of
CT imaging hardware. In [13], an AUTOENCODER-based

2 Computational Intelligence and Neuroscience



architecture was used to simultaneously segment and classify
CT images. )eir proposed architecture consists of an en-
coder and three decoders; these decoders are used for image
reconstruction, image segmentation, and classification, re-
spectively. COVID CT-Net [30] is an attentional CNN,
which can focus on the infected areas of the chest. All of the
introduced approaches in this category propose a custom-
ized architecture for detecting infected cases without uti-
lizing any well-established pretrained networks.

2.2. Methods Based on PretrainedModels. In contrast to the
first group, methods based on pretrained models have
recently gained more attention, where standard pre-
trained CNN models are used to detect COVID-19 [37]
based on CT images. In [38], convolutional networks and
transfer learning have been used to classify the samples
into three categories: COVID-19, bacterial pneumonia,
and normal. )is study aims to evaluate the performance
of standard CNN models such as VGG19 [39], MobileNet
v2 [40], Inception [41], Xception [42], and Inception-
ResNetV2 [41], which have been proposed in recent years.
In [43], to detect COVID-19, transfer learning with fine-
tuning has been used and evaluated their proposed
method on four popular CNN architectures: ResNet18
[44], ResNet50 [44], SqueezeNet [45], and DenseNet-121
[46]. )ey prepared a dataset of around 5000 X-ray images
for COVID-19 detection. Brunese et al. [47] used transfer
learning on a pretrained VGG-16 [39] network to auto-
matically detect COVID-19. Also, [48] applied a pre-
trained DenseNet201 [46] model on chest CT images to
distinguish COVID-19 from non-COVID-19.

In [49], deep learning models and chest CT images
differentiate coronavirus pneumonia from influenza pneu-
monia. )is study was performed on CT images collected
from various hospitals in China. )eir studies have proven
the effectiveness of CT images in diagnosing COVID-19.
DeepPneumonia [50] was designed to classify COVID-19,
bacterial pneumonia, and healthy cases based on CT images.
)eir proposed model achieved an accuracy of 86 : 5% for
differentiating bacterial pneumonia and COVID-19 and
94% for distinguishing COVID-19 and healthy cases.

In [51], a new method called CONVNet based on the 3D
deep learning framework for COVID-19 identification has
been developed. )is method can extract three-dimensional
and two-dimensional representations. )is method used
ResNet [44] architecture. In [52], a deep transfer learning
algorithm was introduced that used X-ray and CT scan
images to accelerate the detection of COVID-19 cases. In
[53], an attention-based deep learning model using the
attention module with VGG-16 has been proposed. )is
method captures the spatial relationship between the ROIs
in chest X-ray images. In [54], a new method based on
BoVW (Bag of Visual Words) features has been proposed,
which by removing the feature map normalization step and
adding the deep features normalization step on the raw
feature maps helps preserve the semantics of each feature
map that may have important clues to differentiate COVID-
19 from pneumonia.

2.3. Methods Based on Handcrafted Feature Extraction.
Some COVID-19 detection methods used handcrafted
feature extraction approaches. In [55], first, different texture
features are extracted from the images by popular texture
descriptors, and then, these texture features are combined
with the extracted features from the pretrained Inception-v3
[56] model. In [57], a method for classifying the positive and
negative cases of COVID-19 based on CT scan images was
proposed. Different texture features were extracted from CT
images using the Gabor filter, and then, the SVM method
was used to classify these images. In [58], to reduce intensity
variations between CT slices, a preprocessing step was ap-
plied on CTslices. )en, a long short-term memory (LSTM)
classifier was used to discriminate between COVID-19,
pneumonia, and healthy cases.

Other related methods based on the combination of
feature extraction approaches and deep learning models are
introduced in [59].

Most of the mentionedmethods are highly dependent on
the image domain of datasets on which they were trained. If
the test set is from the same domain of the training set, the
model performance will be acceptable. However, when the
domain of the evaluation dataset is different, model per-
formance is significantly reduced. However, in real-world
applications, the domain of the inference image is not always
the same as the training set. In other words, unseen data are
often independent of the training set, so the results would
not be reliable.

3. Proposed Approach: ADA-COVID

To overcome the mentioned problems in Section 1, we use
the domain adaptation technique during model training.
Using this technique during the training process, the gen-
erated representations do not depend on the domain of a
particular dataset. Also, we use the triplet loss function for
the training phase. Using this loss function, the distance
between pairs of samples with similar classes in the em-
bedded space is less than samples with different classes.
)erefore, the extracted representations from the ADA-
COVID model are very discriminative and domain
invariant.

3.1. Overview. Figure 1 shows a general overview of the
proposed method. As shown in this figure, different input
domains are used in the COVID-19 detection process. )e
aim is to bring the statistical distribution of these domains
closer together in the embedded space. )e proposed
method uses two different input domains named source and
target. )e source dataset is used to train the network, and
the target dataset is applied for better generalizability of the
network on new datasets. )e next step is preprocessing,
which includes decoding and resize, normalization, and
augmentation. )e output images from the preprocessing
stage are entered into the ADA-COVID architecture. ADA-
COVID consists of three modules as follows—(1) domain-
invariant feature extractor: this module is responsible for
extracting features, (2) classifier: this module is responsible
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for classifying data into two groups: COVID-19 and non-
COVID-19, and (3) discriminator: this module is respon-
sible for distinguishing and differentiating source data from
target data.

)e main aim of the proposed method is to generate
similar representations for images belonging to two different
domains. )is model can perform the correct classification
regardless of the specific features of each input distribution.
)erefore, the model’s generalizability increases, and it has
the best performance for images belonging to different input
domains.

)e preprocessing step is introduced in Section 3.2, and
the proposed ADA-COVID framework is described in
Section 3.3.

3.2. Preprocessing. Preprocessing stage is performed to
prepare data for training and evaluation of the model. )e
following paragraphs describe the different steps carried out
in this regard.

3.2.1. Decode and Resize. CT scan images are saved in
DICOM file format, the widely used format in medical
imaging. We need to convert DICOM format images to
standard image formats such as JPG or PNG to work with
such images. In the proposed method, we convert the images
to grayscale PNG format.

In deep neural networks, input images are often resized
to maintain compatibility with the network architecture and
reduce computations [60]. )e proposed method uses the
pretrained ResNet50 architecture as a feature extractor with
an input size of 224× 224. )erefore, all images are resized
into 224× 224 pixels for training, validation, and testing.

3.2.2. Normalization. To reduce the effect of intensity var-
iations between CTslices, we normalize the data through (1)
in the range [0, 1].

Zi �
Xi − μ
σ + ε

, (1)

where xi represents the i-th image in the train set, and μ and
σ represent the pixel level mean and standard deviation for
all images in the train set, respectively. ε � 1e − 10 is an
insignificant value to prevent zero division, i is the index of
each training sample, and Zi is the normalized version of Xi.

3.2.3. Data Augmentation. Data augmentation means in-
creasing the number of training samples by transforming
images without losing semantic information. We use five
transformations that are randomly applied to samples of the
training set. )ese transformations are selected so that they
do not lead to different interpretations by radiologists. )e
details of these transformations are summarized in Table 1.
Figure 2 shows some images after the preprocessing is
applied.

3.3. ADA-COVID Framework. As shown in Figure 1, the
ADA-COVID framework consists of three main modules:
domain-invariant feature extractor, classifier, and discrim-
inator. )e following paragraphs describe these modules in
detail. Also, the training procedure is provided in this
section.

3.3.1. Domain-Invariant Feature Extractor. )is module is
applied for extracting image features. Common CNN
models such as VGG16 and ResNet are often used to extract
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features from images. )ese models require many training
data to generate better representations. However, in the
COVID-19 detection task, the size of the available datasets
for network training is very small. Using transfer learning
techniques is a practical solution to overcome this limitation.
Transfer learning is a well-known representation learning
technique in which the models trained on large image
datasets (such as ImageNet [61]) are used to initialize the
models for tasks for which the dataset is small. )ere are two
general approaches to use transfer learning from pretrained
models: feature extraction and fine-tuning [62]. In the first
approach, only the weights of some newly added layers
(classification layers) are optimized during training, while in
the second approach, all the weights (or part of the weights)
are optimized for the new task. In the proposed framework,
we use the fine-tuning approach.

In the proposed framework, we use the pretrained
ResNet50 [44] convolutional model trained on the ImageNet
dataset. )e ResNet50 has been selected after testing the
most common pretrained CNN models. )is architecture is
smaller than other ResNet-based models (such as ResNet101
[44] and ResNet152 [44]) and has fewer parameters.
)erefore, network training time is less than other models.
An overview of the ResNet50 model is shown in Figure 3.

3.3.2. Discriminator and Classifier. As described in Section
3.1, different input domains (source and target datasets) are
used in the COVID-19 detection process. )e discriminator
module is responsible for differentiating source data from
target data, and the classifier module is responsible for
classifying data into two groups: COVID-19 and non-
COVID-19. Figure 4 illustrates an overview graphical rep-
resentation of the model using the adversarial training
approach in a multisource transfer learning setting. )e
classifier and discriminator utilize the features extracted by
the feature extractor module at the same time to predict the
class label and the domain from which the data came. )e
output predictor (classifier) and the domain classifier
(discriminator) are trained classically by backpropagating
their respective losses. When it reaches the feature extractor
module, the gradient reversal layer reverses (multiplies by)
(1) the domain classifier’s loss. As a result, while the feature
extractor learns a feature representation that is beneficial for
output prediction, it also learns a feature representation that
is indiscriminate of the domain from which the data come,
promoting a more generalized one. )e goal of learning
representations using this joint architecture is to (1) generate
representations that are indistinguishable from each other;
(2) increase the model’s generalizability; (3) learn

representations that are based on essential features that are
independent of the specific domain and dataset; and (4)
distinguish COVID cases from non-COVID-19 cases with
high accuracy.

)e architecture of the discriminator and classifier
modules is almost the same. In the discriminator module, we
pass the extracted features into two consecutive blocks
consisting of dense, batch normalization, ReLU, and
dropout layers. On top of the discriminator module, we use
the sigmoid function. )e output of this function indicates
the probability of assigning each sample to the source or
target class. In the classifier module, in addition to two
consecutive blocks consisting of dense, batch normalization,
ReLU, and dropout layers, an embedding layer is added on
top of the classifier module. )is embedding layer is dense
and has 64 neurons.

After training the network and learning the appropriate
embedding, in the test phase, a dense layer with two neurons
and a softmax activation function is added on top of the
classifier module so that the network can be used inde-
pendently as a classifier. Also, the discriminator module is
no longer needed in the test phase, so this module is re-
moved in the final application.

3.3.3. Loss Function. Inspired by [63], we use two losses
simultaneously in the network training process to increase
the generalizability and transferability of the model. (2)
represents the loss of the proposed method. )is loss is a
combination of a classifier loss (Ly) and a discriminator loss
(Ld). λd and λy are the coefficients given to the discrimi-
nator and classifier losses, respectively. )ese coefficients are
used to find the optimal balance between variance and bias
for better generalizability of the model.

L � λyLy + λdLd. (2)

We use the triplet loss function to calculate the classifier
output loss (Ly) and the crossentropy loss function to
calculate the discriminator domain loss (Ld).

Triplet loss was first introduced in FaceNet [64].)e idea
is that pairs of samples in a class should have similar rep-
resentations, and pairs of samples in different classes should
have different representations in the embedded space. In
triplet loss, a positive sample and a negative sample are
selected for each sample (anchor). )e positive sample is
selected from the same class of the anchor sample, and the
negative sample is selected from the opposite class of the
anchor sample. Positive and negative samples are selected in
each batch, and the loss function is calculated by (3).

Ly � Max fθ(A) − fθ(P)
����

����
2

− fθ(A) − fθ(N)
����

����
2

+ α, 0 ,

(3)

where, in (3), the function fθ represents the data in em-
bedded space and θ are parameters that must be learned.
)us, fθ(A), fθ(P), and fθ(N) represent embedded rep-
resentations for the anchor, positive, and negative samples,
respectively. ‖‖2 represents the Euclidean distance, and α is a
margin used to ensure that the model does not make the

Table 1: Transformations.

Augmentation Range/type
Brightness [−10%, +10%]
Contrast [−10%, +10%]
Rotation [−20°, +20°]
JPEG noise [50, 100]
Flip Horizontal
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(a)

(b)

Figure 2: Preprocessed samples. (a) COVID-19 and (b) non-COVID-19.
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embeddings fθ(A), fθ(P), andfθ(N) equal to each other
to trivially satisfy the equation.

Due to the many inherent and structural similarities in
medical images, the use of this loss function can be helpful to
better differentiate data from two different classes in our
task.)e brilliant results of using this function in the present
application reinforce the validity of this hypothesis.

We use the crossentropy loss function to calculate the
discriminator domain loss (Ld). )e crossentropy loss
function is calculated by (4). In this equation, y represents
the actual class, and y represents the model output
prediction.

Ld � −y log(y). (4)

4. Experiments

In this section, the performance of the ADA-COVID model
is evaluated. )e results are compared with the following
groups of methods:

(1) Methods that have developed customized network,
such as COVID CT-Net [30], contrastive learning
[35], Amyar et al. [13], Javaheri [36], xDNN [17],
Wang et al. [65], Dadario et al. [66], Wu et al. [67],
Liu [68], Singh et al. [69], He et al. [11], Zheng et al.
[70], and Song et al. [50]

(2) Methods that use pretrained networks and transfer
learning to detect COVID-19, such as DenseNet201-
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based [48], modified VGG19 [52], ResNet-101-based
[71], DenseNet-169-based [11], decision function
[72], Chen et al. [29], Cifci [73], Jin et al. [74],
Yousefzadeh et al. [75], DenseNet-169-based [76],
and Wang et al. [77]

(3) Methods that use handcrafted feature extraction
approaches and conventional classifiers, such as
Hasan et al. [58], Farid et al. [78], Xu et al. [79],
Elghamrawy [80], and DenseNet-121 + SVM [4]

Parameter batch size and the maximum number of it-
erations are typical in the implemented methods, which are
set to 32 and 2 × 104, respectively. )e learning rate in the
ADA-COVID framework is set to 10− 2 (in the ADA-COVID
framework, Adam optimizer is used). In the proposed al-
gorithm, the required parameters are set as follows: λy � 4,
and λd � 1. Due to the small number of images, overfitting
may occur. To solve this problem, dropout has been used
along with the data augmentation technique. )e dropout
rate is set to 0.5. Also, the k-fold crossvalidation technique,
considering k� 5, is used in the ADA-COVID framework.
)e experiments are conducted using the Keras framework
on a computer with Intel (R) Core (TM) i7-7700K, 16GB
RAM, Nvidia GTX 1080 GPU.

To maximize the reliability of the proposed model,
several slides of a patient’s CT scan images are given to the
network, and the average results are reported. In contrast,
most of the compared methods reported the best results
among different slides of a patient’s CT scan images.

4.1. Dataset. To train and evaluate the model’s performance
and compare it with other methods, we use the SARS-CoV-2
CTscan dataset [17] as the source dataset and the COVID19-
CT dataset [11] as the target dataset. )e details of datasets
are summarized in Table 2. 80% of the dataset is selected as a
training set, and 20% of the dataset is selected as a test set.

4.2.PerformanceMetrics. )e following fivemetrics are used
to measure the performance in the experiments.

Accuracy is the number of correct predictions divided by
the total number of samples [81]. )is metric is calculated as
follows.

Accuracy �
TN + TP

TN + TP + FN + FP
. (5)

Precision is the ratio of correct positive predictions to the
number of positive results predicted. )is metric is calcu-
lated as follows.

Precision �
TP

Tp + FP
. (6)

Recall is the ratio of the number of correct positive
predictions to the number of all relevant samples. )is
metric is calculated follows.

Recall �
TP

TP + FN
. (7)

F1 score is the harmonic mean between precision and
recall [82, 83]. )is metric is calculated as follows.

F1 � 2 ×
Recall × Precision
Recall + Precision

. (8)

Specificity rate corresponds to the proportion of negative
samples that are correctly considered negative with respect
to all negative samples. )is metric is calculated by (9).

Specificity �
TN

TN + FP
. (9)

In equations (5) to (9), TP, FP, TN, and FN represent
true positive, false positive, true negative, and false negative,
respectively.

In our experiments, these metrics are expressed as a
percentage. A high percentage indicates a better
performance.

4.3. Experiment 1: Evaluation on the Source Dataset. )is
section compares the proposed approach’s performance
with the state-of-the-art methods on the source dataset,
shown in Table 3. )e results of other methods have been
quoted directly from the relevant publications. Also, for the
proposed method, the confusion matrix of evaluation on the
test set of the source dataset is illustrated in Figure 5. From
Table 3 and Figure 5, it is evident that ADA-COVID per-
forms better than the other methods. It performs the best
overall performance for all evaluation metrics. )e average
accuracy, precision, recall, and F1 metrics of ADA-COVID
are 99.9%, 99.9%, 99.8%, and 99.9%, respectively. Recall
99.8% indicates that, on average, only one COVID-19 image
is incorrectly predicted as non-COVID-19. Also, the pro-
posed model correctly diagnoses all non-COVID-19 cases
with only one false positive. After ADA-COVID, the Effi-
cientNetB0, xDNN, DenseNet201-based, and ShuffleNet
methods have relatively good performance, respectively. In
EfficientNetB0 architecture, on average, two COVID-19
images are incorrectly predicted as non-COVID-19.

)e visual evaluation results of ADA-COVID on 25
random samples from the test dataset are shown in Figure 6.
Due to the model’s high precision, there was no unsuccessful
sample prediction in random results to examine the model’s
possible weaknesses.

4.4. Experiment 2: Evaluation on the Target Dataset. In this
section, we evaluate the performance of the proposed ap-
proach on the target dataset once without training and once
with training. In the first case, the model is trained on the
source dataset and evaluated on the target dataset. In the
second case, the proposed model is trained and evaluated
independently on the target dataset. In other words, the
second dataset input part and discriminator module are not
considered in the second case, and the network is trained
and evaluated on the target dataset. )e performance of the
different methods and models is shown in Table 4. )e
results of other methods have been quoted directly from the
relevant publications. )e compared methods are trained
and evaluated on the target dataset.
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As shown in Table 4, ADA-COVID with training on the
target dataset has the best performance. )e average accu-
racy, recall, specificity, and F1 metrics are 95.8%, 94.9%,
96%, and 95.2%, respectively. Also, after ADA-COVID with
training, the ADA-COVID without training mode has the
best performance. )e average accuracy, recall, specificity,
and F1 metrics are 92.5%, 93.5%, 94.2%, and 93%, respec-
tively. In without training mode, the average recall of 93.5%
indicates that, on average, eight images of COVID-19 are
incorrectly predicted as non-COVID-19. Also, the average
specificity of 94.2 indicates that all non-COVID-19 cases are

detected with only seven false-positive samples. In training
mode, the average recall of 94.9% indicates that, on average,
6 COVID-19 images are incorrectly predicted as non-
COVID-19. Also, the average of specificity 96% indicates
that it detects all cases of non-COVID-19 with only five
false-positive samples.

In ADA-COVID without training mode, although the
proposed approach is not trained on the target dataset, it has
better results than other compared methods. )is indicates
that the proposed method has significantly increased gen-
eralizability, independent of the source dataset.

After ADA-COVID with and without training modes,
the ResNet-50, ResNeXt-101, and ResNeXt-50 architectures
have relatively good performance. In these architectures, the
average recall of 92.16% indicates that, on average, more
than 12 COVID-19 images are incorrectly predicted as non-
COVID-19. Also, the average specificity of 90.2% indicates
that all non-COVID-19 cases are detected with 15 false-
positive samples. Among the reported results, AlexNet has
the worst performance.

4.5. Experiment 3: Crossdataset Evaluation. To investigate
the effect of the domain adaptation used in our approach on
the final results, we evaluate the proposed approach’s per-
formance once with domain adaptation and once without
domain adaptation. Also, we train the model once on the
source dataset and evaluate it on the target dataset, and once
on the target dataset and evaluate it on the source dataset.
We compare the proposed method with the method

Table 2: Characteristics of the utilized datasets.

Datasets No. of
samples

No. of COVID-19
samples

No. of non-COVID-19
samples Image size

SARS-CoV-2 CT scan (source dataset) 2482 1252 1230 119×104 416× 512
COVID-19 CT (target dataset) 746 349 397 124×1531485×1853

Table 3: Performance comparison of different models for detecting COVID-19 on the source dataset (the best rates are bold-faced)

Model/method
Evaluation metrics

Accuracy Precision Recall F1
AdaBoost 95.1 93.6 96.7 95.1
AlexNet 93.7 94.9 92.2 93.6
Decision tree 79.4 76.8 83.1 79.8
EfficientNetB0 98.9 99.1 98.9 99.0
GoogleNet 91.7 90.2 93.5 91.8
ResNet50 94.9 93.0 97.1 95.0
ResNet50V2 94.2 92.8 96.7 94.1
ShuffleNet 97.5 96.1 99.0 97.5
SqueezeNet 95.1 94.2 96.2 95.2
VGG-16 94.9 94.0 95.4 94.9
Xception 98.8 99.0 98.6 98.8
Contrastive learning [35] 90.8 95.7 85.8 90.8
COVID CT-Net [30] 90.7 88.5 85.0 90.0
DenseNet201-based [48] 96.2 96.2 96.2 96.2
Modified VGG19 [52] 95.0 95.3 94.0 94.3
xDNN [17] 97.3 99.1 95.5 97.3
ADA-COVID 99.9 99.9 99.8 99.9

Confusion Matrix, Normalized

Predicted label
Non-COVID COVID-19

COVID-19

Tr
ue

 la
be

l

Non-COVID
200

150

100

50

0.9993 0.0007

0.0001 0.9999

Figure 5: Confusion matrix of evaluation on the test set of the
source dataset.
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proposed by Silva et al. [22] as the baseline. As shown in
Table 5, the proposed method performs better than the
reverse case when trained on the source dataset and eval-
uated on the target dataset.)e reason for this is that the size
of the target dataset is much smaller than the size of the
source dataset. Also, the data collected in this dataset are
from different sources, in different contrasts and with dif-
ferent visual features. )erefore, it is not a suitable dataset
for the model training. Comparison of the proposed method
with baseline [22] shows that the proposed method has
improved the results by an average of 30%.

As shown in Table 5, the proposed approach performs
better with the domain adaptation technique than without
domain adaptation mode. Using the domain adaptation
technique, the proposed approach results are improved by
an average of 44.10%. )erefore, it can be concluded that
better representations are generated by using the domain
adaptation technique. As a result, the quality of the diag-
noses is better, specifically for the unseen new samples.

4.6. Experiment 4: ADA-COVID vs. Pretrained Models.
We evaluate the proposed method with methods in which
the models are already pr-trained on the ImageNet dataset.
As shown in Table 6, the results show that the proposed
algorithm has a higher performance than other successful
methods in this field. )e critical point is that the proposed
method is trained on the small SARS-CoV-2 CTscan dataset,
while the other methods are often trained on a large dataset.
)erefore, apart from the qualitative contributions and the
proposed innovations that offer a low-cost and practical
solution to overcome the shortcut learning problem [26], the
proposed method achieves significant improvements using
only a few sets of training samples without suffering from
overfitting problem.

)e method presented by Ardakani et al. [84] has almost
higher performance than ADA-COVID in terms of recall
metric; however, it suffers from low reliability. In other
words, network performance decreases dramatically in the
face of unseen data.

I=0 | P=1 | L=1 I=1 | P=1 | L=1 I=2 | P=1 | L=1 I=3 | P=0 | L=0 I=4 | P=0 | L=0

I=5 | P=0 | L=0 I=6 | P=0 | L=0 I=7 | P=0 | L=0 I=8 | P=0 | L=0 I=9 | P=0 | L=0

I=10 | P=1 | L=1 I=11 | P=1 | L=1 I=12 | P=0 | L=0 I=13 | P=0 | L=0 I=14 | P=1 | L=1

I=15 | P=1 | L=1 I=16 | P=1 | L=1 I=17 | P=1 | L=1 I=18 | P=1 | L=1 I=19 | P=1 | L=1

I=20 | P=1 | L=1 I=21 | P=1 | L=1 I=22 | P=0 | L=0 I=23 | P=1 | L=1 I=24 | P=0 | L=0

Figure 6: Performance evaluation on 25 random samples from the test set. “I” is the image index, “P” is the predicted value, and “L” is the
ground truth label.
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4.7. Experiment 5: ADA-COVID vs. Customized Models.
)is section compares the proposed method with methods
that have developed customized architectures specifically to
detect COVID-19. In these methods, transfer learning is not
used, and the network is trained from scratch.

Table 7 shows the results for ADA-COVID and other
compared approaches. As shown in this table, the ADA-
COVID method, for all metrics, has the best results. After
ADA-COVID, Elghamrawy and Hassanien [80] have the
second-best results. Moreover, Hasan et al. [58] have

Table 5: Crossdataset evaluation results.

Method Training dataset Test dataset
Evaluation metrics

Accuracy Recall Precision

Baseline

Source Target (train set) 59.12 64.14 54.95
Source Target (test set) 56.16 53.06 54.74
Source Target (all data) 58.31 61.03 54.90
Target Source 45.25 54.39 46.36

ADA-COVID (without domain adaptation)

Source Target (train set) 64.28 65.10 64.12
Source Target (test set) 62.05 63.30 62.00
Source Target (all data) 65.37 66.80 65.22
Target Source 57.00 59.41 56.88

ADA-COVID (with domain adaptation)

Source Target (train set) 91.04 92.70 92.11
Source Target (test set) 90.88 91.00 91.90
Source Target (all data) 92.49 93.53 92.47
Target Source 83.07 87.51 84.26

Table 4: Performance comparison of different models for detecting COVID-19 on the target dataset.

Model/Method
Evaluation metrics

Accuracy Recall Specificity F1
AlexNet 74.5 70.4 79.0 75.0
DenseNet-121 88.9 88.8 88.9 88.2
DenseNet-169 91.2 93.3 88.9 90.8
DenseNet-201 91.7 88.6 94.1 91.9
GoogleNet 78.9 75.9 82.3 79.0
Inception-ResNet-v2 86.3 88.1 84.2 87.0
Inception-v3 89.4 90.0 88.9 88.8
MobileNet-v2 87.2 93.2 77.6 89.0
NasNet-large 85.2 79.3 91.9 84.0
NasNet-Mobile 83.4 84.8 81.9 85.0
ResNet-101 89.7 82.2 89.2 89.0
ResNet-18 90.1 89.4 90.9 91.0
ResNet-50 90.8 90.0 91.0 90.1
ResNeXt-101 90.9 93.1 88.9 90.6
ResNeXt-50 90.6 93.4 88.2 90.3
ShuffleNet 86.1 83.5 89.0 86.0
SqueezeNet 78.5 86.5 63.8 82.0
VGG-16 78.5 74.6 82.8 76.0
VGG-19 83.2 90.7 74.7 85.0
Xception 85.6 88.3 80.6 87.7
Contrastive learning [35] 78.6 78.0 77.0 78.8
Decision function [72] 88.3 87.0 87.9 86.7
DenseNet-121 + SVM [4] 85.9 84.9 86.8 86.2
DenseNet-169-based [11] 83.0 84.8 85.5 81.0
DenseNet-169-based [76] 87.7 85.6 86.9 87.8
ResNet-101-based [71] 80.3 85.7 86.0 81.8
ADA-COVID (without training) 92.5 93.5 94.2 93.0
ADA-COVID (with training) 95.8 94.9 96.0 95.2

Computational Intelligence and Neuroscience 11



Table 6: ADA-COVID vs. pretrained models.

Reference Data sources No. of samples Model Performance

Ardakani et al. [84] Real-time data from the hospital environment.

Total: 1,020
COVID-19 : 510
Non-COVID-19 :

510

AlexNet, VGG-16,
VGG-19, . . .

Accuracy: 99.51
Recall: 100
Specificity:

99.02

Chen et al. [29] Renmin Hospital of Wuhan University. Total: 35,355 UNet++

Accuracy: 98.85
Recall: 94.34
Specificity:

99.16

Cifci [73] Kaggle benchmark dataset [85] Total: 5,800 AlexNet, Inception-
V4

Accuracy: 94.74
Recall: 87.37
Specificity:

87.45

Javaheri et al. [36] Five medical centers in Iran, SPIE-AAPM-NCI [86],
LUNGx [87]

Total: 89,145
COVID-19 : 32,230
Non-COVID-19 :

56,915

BCDU-Net (U-Net)
Accuracy: 91.66
Recall: 87.5
Specificity: 94

Jin et al. [74] Wuhan Union Hospital,
LIDC-IDRI [88], ILD-HUG [89]

Total: 1,881
COVID-19 : 496
Non-COVID-19 :

1,385

ResNet152

Accuracy: 94.98
Recall: 94.06
Specificity:

95.47
F1: 92.78

Jin et al. [65] Five different hospitals of China.

Total: 1,391
COVID-19 : 850
Non-COVID-19 :

541

DPN-92, Inception-
v3,

ResNet-50

Recall: 97.04
Specificity: 92.2

Li et al. [66] Multiple hospitals environment.

Total: 4,536
COVID-19 :1,296
Non-COVID-19 :

1,325

ResNet50 Recall: 90
Specificity: 96

Wu et al. [67] China Medical University,
Beijing Youan Hospital.

Total: 495
COVID-19 : 368
Non-COVID-19 :

127

ResNet50
Accuracy: 76
Recall: 81.1

Specificity: 61.5

Xu et al. [79] Zhejiang University, Hospital of Wenzhou, Hospital
of Wenling.

Total: 618
COVID-19 : 219
Non-COVID-19 :

399

ResNet18
Accuracy: 86.7
Recall: 81.5
F1: 81.1

Yousefzadeh et al.
[75] Real-time data from the hospital environment.

Total: 2,124
COVID-19 : 706
Non-COVID-19 :

1,418

DenseNet, ResNet,
Xception,

EcientNetB0

Accuracy: 96.4
Recall: 92.4

Specificity: 98.3
F1: 95.3

ADA-COVID SARS-CoV-2 CT scan dataset

Total: 2,482
COVID-19 :1,252
Non-COVID-19 :

1,229

ResNet50

Accuracy: 99.96
Recall: 99.80
Specificity:

99.80
F1: 99.90

12 Computational Intelligence and Neuroscience



Table 7: ADA-COVID vs. customized models.

Reference Data sources No. of samples Model Performance

Amyar et al. [13] COVID CT [16], COVID-19 CT segmentation
dataset [90], Henri Becquerel Center

Total: 1,044
COVID-19 :

449
Non-COVID-

19 : 595

Encoder-decoder with
multilayer perceptron

Accuracy: 86.0
Recall: 94.0
Specificity:

79.0

Elghamrawy and
Hassanien. [80]

COVID-19 database [91],
COVID CT [16]

Total: 583
COVID-19 :

432
Non-COVID-

19 :151

WOA-CNN

Accuracy:
96.40

Recall: 97.25
Precision: 97.3

Farid et al. [78] Kaggle benchmark dataset [85]

Total: 102
COVID-19 : 51
Non-COVID-

19 : 51

CNN

Accuracy:
94.11

Precision: 99.4
F1: 94.0

Hasan et al. [58] COVID-19 [92], SPIE-AAPM-NCI lung nodule
classification challenge dataset [86]

Total: 321
COVID-19 :

118
Non-COVID-

19 : 203

QDE–DF Accuracy:
99.68

He et al. [11] COVID-19 database [91],
COVID-19 [92], Eurorad [93], corona cases [94]

Total: 746
COVID-19 :

349
Non-COVID-

19 : 397

CRNet
Accuracy: 86.0

F1: 85.0
AUC: 94.0

Liu et al. [68] Ten designated COVID-19 hospitals in China

Total: 1,993
COVID-19 :

920
Non-COVID-

19 :1,073

Modified DenseNet-264

Accuracy: 94.3
Recall: 93.1
Specificity:

95.1

Singh et al. [69] COVID-19 patient chest CT images [95]

Total: 150
COVID-19 : 75
Non-COVID-

19 : 75

MODE-CNN

Accuracy:
93.25

Recall: 90.70
Specificity:

90.72

Wang et al. [77] Xi’an Jiaotong University, Nanchang University,
Xi’an Medical College

Total: 1,065
COVID-19 :

740
Non-COVID-

19 : 325

Modified inception

Accuracy: 79.3
Recall: 83.0
Specificity:

67.0

Song et al. [50] Hospital of Wuhan University, third affiliated
hospital

Total: 1,990
COVID-19 :

777
Non-COVID-

19 :1,213

DRE-Net
Accuracy: 94.3
Recall: 93.0

Precision: 96.0

Zheng et al. [70] Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology Total: 630 DeCoVNet

Accuracy: 90.1
Recall: 90.7
Specificity:

91.1

ADA-COVID SARS-CoV-2 CT scan dataset

Total: 2,482
COVID-19 :

1,252
Non-COVID-

19 :1,229

ResNet50

Accuracy:
99.96

Recall: 99.80
Specificity:

99.80
F1: 99.90
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relatively good performance. Wang et al. [77] have the worst
performance among the reported results.

5. Conclusion

Rapid diagnosis of COVID-19 with high reliability is vital in
the early stages of the infection. Using the transfer learning
technique, this paper proposed an adversarial deep domain
adaptation-based approach (ADA-COVID) for COVID-19
diagnosis from lung CT scan images. Previous studies suffer
from shortcut learning when the model is trained using
limited train data; furthermore, the state-of-the-art ap-
proaches fail to generalize for new samples, achieving poor
performance or behaving similar to random predictors.
)anks to the proposed domain adaptation between the
source and unseen target samples, ADA-COVID guarantees
that the generated representations do not depend on the
domain of a specific dataset. In addition, since medical
images have a high structural resemblance compared to
other image data in machine vision tasks, we utilized the
triplet loss function for training the proposed model to
achieve improved discrimination between positive and
negative samples. Finally, the proposed approach can be
easily extended for similar applications which utilize medical
imaging such as radiography. ADA-COVID’s performance
was tested and compared to many state-of-the-art ap-
proaches. )e results demonstrated that ADA-COVID
achieves significant classification improvements, up to 60%,
compared to the best results of competitors, even without
directly training on the same dataset.

Data Availability

Previously reported image data were used to support this
study and are available at doi.org/10.1101/2020.04.24.
20078584 and https://doi.org/10.1101/2020.04.13.20063941.
)ese prior studies (and datasets) are cited at relevant places
within the text as references [11, 17].
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