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Anomaly Detection




Anomaly Detection [Outlier Data Detection]

 Anomaly Detection. Identifying observations that differ greatly from most observations.

X
] Scam Detection.

= Detection of highly improbable
transactions by the credit cardholder.

J Network Security:.

= Detecting activities with very low
probability by legal user is done. o




Anomaly Detection [Outlier Data Detection]

 Anomaly Detection. Identifying observations that differ greatly from most

observations.
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1 A probabilistic approach to anomaly detection.

) Creating a probabilistic model from the data

[Expressing the probability of seeing any possible event]

1 Specify observations that are very unlikely to
occur.







Gausslian Distribution

 Gaussian Distribution. Suppose x has Gaussian Distribution with average of u and
variance is o2
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Univariate Gaussian Distribution
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Parameter Estimation
A
1 Data collection.

. x D x@ x(3 .. x(m)
J Purpose. Estimation of values u and o { )
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Anomaly Detection Algorithm -




Estimation of Distribution
N

Training set. x@, x@ 3 ... p} xO gRn

d Assumptions. xj~N(y, 67)
) Features follow a normal distribution.

] There is no correlation between features.| Diagonal covariance matrix|

P(X)




Anomaly Detection Algorithm
B

] Determining features that can be useful in anomaly detection.

] Estimation of parameters (forn>j>1)
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1 Calculation p(x) for the new data of x
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 Printing the <<yes>> output If p(x) < e



Example
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Development and Measurement of Anomaly Detection Systems -



Numerical Evaluation

-0V
d Importance.

O During the process of developing learning systems, if we have a method to evaluation the
system, then Many decisions (such as feature selection, etc.) will become much simpler.

L Suppose we have some labeled data that (y = 0) is its normality and its abnormality is (y = 1).

A Training collection (x®, x(D, x(3 ... x(m)
Q Validation set. (x3.58)) (x2 A2) o (G A7)

(] Test set. {(xt(ggt’ %(el's)t) ’ (xt(ggt’ yt(ei)t) T ’(x(:;;ieft) yt(‘:rsltteso)}



Example
|

 Data collection. Engine performance information
1 10000 Unbroken engine
1 20 broken engine

] Data assortment.

) Training set. 6000 unbroken engine[Single Category Assortment]

) Validation set. 2000 unbroken engine and 10 broken engine

) Experimental set. 2000 unbroken engine and 10 broken engine



Algorithm Evaluation

.00V
 Instruction. Development of the p(x) model according to the training set

[ Forecasting. For samples in the validation or training set

1 Possible evaluation factor.
] true positive, false positive, true negative, false negative

1 Accuracy rate and reminder rate

J F1 score

JAttention. Validation set can be used to choose a suitable value for €.



Evaluation Factor

J Evaluation factor. For unbalanced data

real . TP
Precision =
TP
O Recall =
g TP + FN
= FN TN
Fl=2
P+ R




Anomaly Detection or Supervised Learning? -



Anomaly detection or supervised learning?
15—

O Number of samples.
) Large numbers of positive and negative samples

O Positive sample.

1 Number of positive examples for the algorithm
to understand them, is enough.

1 New positive samples are similar to positive ones
that the algorithm was previously faced, during the
training process.

O Number of samples.

O The ratio of the number of positive to negative
samples is very low

O Different “Types" of anomalies.

O For any algorithm, learning anomalies from small
numbers
of positive samples is very difficult.

O New anomalies may not be similar to anomalies
that have been seen before.



Anomaly detection or monitored learning?
B

O Spam detection. (] Scam detection

1 Construction and production

 Weather forecast. _ _ _
(making airplane engines).

1 Diagnosis of malignant cancerous tumors. U Monitoring machines in data centers.

d... d...



Select Features




Converting the Feature with Abnormal Distribution to the Feature

with Normal Distribution

Original Data (Gamma Distribution) Transformed Data (Normal Distribution)

X = np.random.gamma (1, 2, (10000, 1))
plt.hist(x, 50)

plt.hist(x ** 0.3, 50)




Error Analysis for Helping in Anomaly Detection
-z
JPurpose. We want p(x) value:

1 Be large for normal data.
1 Be small for abnormal data.

d A common problem.

_ _ X <—— Abnormal
1 There i1s no differences between normal and | T
abnormal for p(x). I VP ‘
2 1 (o % x X y X
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Monitor Computers in Data Centers

I I EEEEE—————————————————————————

J Features selecting. Selection of features that are very small or very large
If there Is an anomaly.
1 Memory usage
) Number of disk accesses per second

) Processor load
) Network traffic

J Add new features to detect abnormal conditions.

l The ratio of processor load to network traffic

[For example, if the processor is stuck in an infinite loop, the value of this feature will be very
large.]



Multivariate Gaussian Distribution -




Introductory Example
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Bivariate Gaussian function
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As the processor load increases, memory

consumption normally increases

Increase.
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Bivariate Gaussian function
I
] Bivariate Gaussian function.

] Parameters

Covariance Matrix

d

U € R > e R



Diagonal Covariance Matrix, the Variance of Features is Equal
-

ol el ekl




Diagonal Covariance Matrix, the Variance of Features is Equal
-

w=ol==1lo 3 = [o]2 [06 ! w= ol == o




Diagonal Covariance Matrix, the Variance of Features is Equal
N
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Positive Correlation Between the Features
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Negative Correlation Between the Features
-
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Center (Mean) of Gaussian Distribution
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Anomaly Detection with Multivariate Gaussian Function -



Multivariate Gaussian Distribution
.
J Multivariate Gaussian distribution function.

04 : 04 » 04 ‘
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0. o
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L Estimation of parameters.

1 m 1 m _ . r
H:E; x(l) :E;(x(l)—‘u)(x(l)—u)



Multivariate Gaussian Distribution

-
1 Multivariate Gaussian distribution function.

1 Estimation of parameters.

mu = np.mean (X, axis=0) Sigma = np.cov(X.T)




Algorithm
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] Estimation of p(x) model parameters
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 Calculate the value of p(x) for the new data of x

1 1
p(x; p, D) = 1X|12 (2m)n/2 eXp(_E(x _M)TZ_l (x—u))

- Printing the <<yes>> output If p(x) <€



Relation with the Primary Model

d Primary model.
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J Relation with multivariate Gaussian distribution.




Introductory Model or Multivariate Gaussian Distribution

-=s 4@
 Introductory model.

1 Creating features is done manually. (x; /x,)
1 Computational costs are relatively low.

O If the number of training samples is small, it still works correctly. [Number of
parameters: 2n]

1 Multivariate gaussian distribution.
O It automatically learns the correlation between features.
1 Computational costs are high. [Calculating the inverse of the covariance matrix]

 The number of training samples should be more than the number of features.
[Invertibility of matrix X]



