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Anomaly Detection
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 Anomaly Detection. Identifying observations that differ greatly from most observations.

 Scam Detection.

 Detection of highly improbable 

transactions by the credit cardholder.

 Network Security.

 Detecting activities with very low 

probability by legal user is done.

Anomaly Detection [Outlier Data Detection]
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𝑝 𝑥 < 𝜖

𝑝 = 0.01

𝑝 = 0.00001

 Anomaly Detection. Identifying observations that differ greatly from most

observations.

 A probabilistic approach to anomaly detection.

 Creating a probabilistic model from the data

[Expressing the probability of seeing any possible event]

 Specify observations that are very unlikely to 

occur.

Anomaly Detection [Outlier Data Detection]



Gaussian Distribution(Normal)
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𝜇

𝜎

2𝑝 𝑥; 𝜇, 𝜎 =
1

𝜎 2𝜋
𝑒

−
𝑥−𝜇 2

2𝜎2𝑥~𝖭 𝜇, 𝜎2

 Gaussian Distribution. Suppose x  has Gaussian Distribution with average of 𝜇 and 

variance  is 𝜎2.

Gaussian Distribution
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Univariate Gaussian Distribution
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𝑥 1 , 𝑥 2 , 𝑥 3, ⋯ , 𝑥 𝑚

𝜇

𝜎

𝑚
𝜎2 =

1
𝑥 𝑖 − 𝜇

2

 Data collection.

 Purpose. Estimation of values 𝜇 and 𝜎

 

𝑖=1

𝑚

𝜇 =
1

𝑚
 

𝑖=1

𝑚

𝑥(𝑖)

Parameter Estimation



Anomaly Detection Algorithm



Estimation of Distribution
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𝑥 1 , 𝑥 2 , 𝑥 3 , ⋯ , 𝑥𝑚 , 𝑥 𝑖 ∈ ℝ𝑛

𝑝 𝒙 = 𝑝 𝑥1; 𝜇1, 𝑝 𝑥2; 𝜇2, 𝑝 𝑥3; 𝜇3,
𝑛⋯𝑝 𝑥𝑛 ; 𝜇𝑛 , 𝜎

2

𝑗 𝑗=1
𝑛 𝑝(𝑥𝑗;𝜇𝑗 , 𝜎𝑗

2)=

xj~N(μj, σj
2)

Training set.

Assumptions.

 Features follow a normal distribution.

 There is no correlation between features.[Diagonal covariance matrix]

𝜎1
2 𝜎2

2 𝜎3
2



Anomaly Detection Algorithm
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𝑗 𝑚
=

𝑚

1
=𝜇𝑗  

𝑖=1

𝑚

𝑥𝑗
𝑖 𝜎𝑗

2 1
 

𝑖=1

𝑚

( 𝑥𝑗
𝑖 − 𝜇𝑗)

2

 𝑗=1
𝑛 𝑝(𝑥𝑗;𝜇𝑗; 𝜎𝑗

2)   =   P(x) =  
1

𝜎 2𝜋
exp −

𝑥𝑗 − 𝜇𝑗
2

𝑗2𝜎2

j=1

n

 Determining features that can be useful in anomaly detection.

 Estimation of parameters (for n ≥ j ≥ 1)

 Calculation p(x) for the new data of x 

 Printing the <<yes>> output if p(x) < 𝜖



𝑥1

𝑥
2

𝑥2

𝑥1

Example
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𝜇1 = 5, 𝜎1 = 2

𝜇2 = 3, 𝜎2 = 1

1𝑝(𝑥1; 𝜇1, 𝜎2)

2𝑝(𝑥2; 𝜇2, 𝜎2)

𝜀 = 0.02

𝑡𝑒𝑠𝑡𝑝(𝑥 1 ) = 0.0426 𝑡𝑒𝑠𝑡𝑝(𝑥 2 ) = 0.0021



Development and Measurement of Anomaly Detection Systems
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𝑥 1 , 𝑥 2 , 𝑥 3 ⋯ , 𝑥 𝑚

𝑐𝑣 c𝑣𝑥 1 , 𝑦
1 𝑐𝑣 𝑐𝑣, 𝑥 2 , 𝑦 2 , ⋯ , 𝑥 𝑚 𝑐 𝑣 , 𝑦 𝑚 𝑐 𝑣

𝑐𝑣 𝑐𝑣

𝑥 1
𝑡𝑒𝑠𝑡 𝑡𝑒𝑠𝑡, 𝑦 1 , 𝑥 2

𝑡𝑒𝑠𝑡 𝑡𝑒𝑠𝑡, 𝑦 2 , ⋯ , 𝑥 𝑡𝑒𝑠𝑡
𝑚𝑡𝑒𝑠𝑡 𝑦𝑡𝑒𝑠𝑡

𝑚 𝑡 𝑒 𝑠 𝑡

 Importance.

 During the process of developing learning systems, if we have a method to evaluation the 

system, then Many decisions (such as feature selection, etc.) will become much simpler.

 Suppose we have some labeled data that (y = 0) is its normality and its abnormality is (y = 1).

 Training collection

 Validation set.

 Test set.

Numerical Evaluation



Example
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Data collection. Engine performance information

 10000 Unbroken engine

 20 broken engine

Data assortment.

 Training set.

 Validation set.

 Experimental set.

6000 unbroken engine[Single Category Assortment] 

2000 unbroken engine and 10 broken engine

2000 unbroken engine and 10 broken engine



Algorithm Evaluation
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𝑦 =  
1,
0,

p(x) < 𝜀
p(x) ≥ 𝜀

 Instruction. Development of the p(x)  model according to the training set

 Forecasting. For samples in the validation or training set

 Possible evaluation factor.

 true positive, false positive, true negative, false negative

 Accuracy rate and reminder rate

F1 score

Attention. Validation set can be used to choose a suitable value for 𝜀.



Evaluation Factor
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𝒚 = 𝟏 𝒚 = 𝟎

𝒚 = 𝟏 TP FP

𝒚 = 𝟎 FN TN

real

p
re

d
ic

t

𝑇𝑃
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃 + 𝐹𝑃

𝑇𝑃
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃 + 𝐹𝑁

𝑃 ∙ 𝑅
𝐹1 = 2

𝑃 + 𝑅

 Evaluation factor. For unbalanced data



Anomaly Detection or Supervised Learning?



Anomaly detection or supervised learning?
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Anomaly DetectionMonitored Learning

 Number of samples.  Number of samples.

 Large numbers of positive and negative samples  The ratio of the number of positive to negative 

samples is very low

 Positive sample.  Different “Types" of anomalies.

 Number of positive examples for the algorithm 

to understand them, is enough.

 For any algorithm, learning anomalies from small 

numbers

of positive samples is very difficult.

 New anomalies may not be similar to anomalies 

that have been seen before.
 New positive samples are similar to positive ones 

that the algorithm was previously faced, during the 

training process.



Anomaly detection or monitored learning?
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Anomaly detectionMonitored learning

 Scam detection Spam detection.

 Weather forecast.

 Diagnosis of malignant cancerous tumors.

 …

 Construction and production 

(making airplane engines).

 Monitoring machines in data centers.

 …



Select Features
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x = np.random.gamma(1, 2, (10000, 1))

plt.hist(x, 50)
plt.hist(x ** 0.3, 50)

𝑥0.3

Converting the Feature with Abnormal Distribution to the Feature 

with Normal Distribution



Error Analysis for Helping in Anomaly Detection
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𝑥1

𝑥1

𝑥2

Purpose. We want p(x) value:

 Be large for normal data.

 Be small for abnormal data.

 A common problem.

 There is no differences between normal and 

abnormal for p(x).

Abnormal



Monitor Computers in Data Centers

Features selecting. Selection of features that are very small or very large

if there is an anomaly.

 Memory usage

 Number of disk accesses per second

 Processor load

 Network traffic

Add new features to detect abnormal conditions.

 The ratio of processor load to network traffic
[For example, if the processor is stuck in an infinite loop, the value of this feature will be very 

large.]

23



Multivariate Gaussian Distribution



𝑥
2

(M
em

o
ry

U
se

)

𝑥1 (CPU Load)
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𝑥1 (CPU Load)

𝑝(𝑥1; 𝜇1, 𝜎2)
1

𝑥2 (Memory Use)

2𝑝(𝑥2; 𝜇2, 𝜎2)

As the processor load increases, memory 

consumption normally increases

increase. 

Introductory Example

Bivariate Gaussian function



Bivariate Gaussian function
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 Bivariate Gaussian function.

𝜇 ∈ ℝ𝑛 Σ ∈ ℝ𝑛×𝑛

𝑝 =
Σ 1/2

1

2𝜋 n / 2
exp −

1

2
𝑥 − 𝜇 𝑇Σ−1 𝑥 − 𝜇X; 𝜇, 

 Parameters

Covariance Matrix



𝑥2

𝑥1

𝑥1𝑥2

Diagonal Covariance Matrix, the Variance of Features is Equal
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𝜇 =
0

0
Σ =

1 0

0 1
𝜇 =

0

0
Σ =

0.6 0

0 0.6
𝜇 =

0

0
Σ =

2 0

0 2

𝑥1𝑥2 𝑥1𝑥2

𝑥2

𝑥1

𝑥2

𝑥1
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𝜇 =
0

0
Σ =

1 0

0 1
𝜇 =

0

0
Σ =

0.6 0

0 1
𝜇 =

0

0
Σ =

2 0

0 1

Diagonal Covariance Matrix, the Variance of Features is Equal
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𝜇 =
0

0
Σ =

1 0

0 1
𝜇 =

0

0
Σ =

1 0

0 0.6
𝜇 =

0

0
Σ =

1 0

0 2

Diagonal Covariance Matrix, the Variance of Features is Equal



Positive Correlation Between the Features
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𝜇 =
0

0
Σ =

1 0

0 1
𝜇 =

0

0
Σ =

1 0.5

0.5 1
𝜇 =

0

0
Σ =

1 0.8

0.8 1
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𝜇 =
0

0
Σ =

1 0

0 1
𝜇 =

0

0
Σ =

1 −0.5

−0.5 1
𝜇 =

0

0
Σ =

1 −0.8

−0.8 1

Negative Correlation Between the Features



Center (Mean) of Gaussian Distribution
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𝜇 =
0

0
Σ =

1 0

0 1
𝜇 =

0

0.5
Σ =

1 0

0 1
𝜇 =

1.5

−0.5
Σ =

1 0

0 1



Anomaly Detection with Multivariate Gaussian Function



Multivariate Gaussian Distribution
34

𝑚

1
Σ = 𝑥 𝑖 − 𝜇 𝑥 𝑖 − 𝜇

𝑇

𝑚

1
𝜇 = 𝑥 𝑖

𝑝 =
Σ 1/2

1

2𝜋 n / 2
exp −

1

2
𝑥 − 𝜇 𝑇Σ−1 𝑥 − 𝜇X; 𝜇, 

Multivariate Gaussian distribution function.

Estimation of parameters.

 

𝑖=1

𝑚

 

𝑖=1

𝑚
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𝑝 𝑥; 𝜇, Σ =
Σ 1Τ2

1

2𝜋 𝑛Τ2
exp −

1

2
𝑥 − 𝜇 𝑇Σ−1 𝑥 − 𝜇

mu = np.mean(X, axis=0) Sigma = np.cov(X.T)

 Multivariate Gaussian distribution function.

 Estimation of parameters.

Multivariate Gaussian Distribution



Algorithm
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𝑝 𝑥; 𝜇, Σ =
1

Σ 1/2 2𝜋 𝑛 /2 2

1
exp − 𝑥 − 𝜇 𝑇Σ−1 𝑥 − 𝜇

𝜇 =
1

𝑚
 

𝑖=1

𝑚

𝑥(𝑖) =
1

𝑚
 

𝑖=1

𝑚

(𝑥(𝑖) − 𝜇)(𝑥 𝑖 −𝜇)
T

 

 Estimation of p(x) model parameters  

 Calculate the value of  p(x)  for the new data of x

 Printing the <<yes>> output if p(x) < 𝜖
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𝑝 𝒙 = 𝑝 𝑥1; 𝜇1, 𝑝 𝑥2; 𝜇2, 𝑝 𝑥3; 𝜇3, 𝑛⋯𝑝 𝑥𝑛 ; 𝜇𝑛 , 𝜎
2

𝑝 𝑥; 𝜇, Σ =
Σ 1/2

1

2𝜋 𝑛 /2
exp −

1

2
𝑇Σ−1𝑥 − 𝜇 𝑥 − 𝜇

Σ =

𝜎2

𝜎2

1 0 ⋯ 0

0 2 ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑛𝜎

2

Relation with the Primary Model

 Primary model.

𝜎1
2 𝜎2

2 𝜎3
2

 Relation with multivariate Gaussian distribution.



Introductory Model or Multivariate Gaussian Distribution
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 Introductory model. 

 Creating features is done manually. (𝑥1/𝑥2)

 Computational costs are relatively low.

 If the number of training samples is small, it still works correctly. [Number of 

parameters:  2n]

 Multivariate gaussian distribution.

 It automatically learns the correlation between features.

 Computational costs are high. [Calculating the inverse of the covariance matrix]

 The number of training samples should be more than the number of features. 

[Invertibility of matrix Σ]


