Machine Learning

Amin Golzari Oskouei

a.golzari@azaruniv.ac.ir a.golzari@tabrizu.ac.ir https://github.com/Amin-Golzari-Oskouei

Azarbaijan Shahid Madani University 2023

Anomaly Detection

Anomaly Detection [Outlier Data Detection]

Anomaly Detection. Identifying observations that differ greatly from most observations.

- Scam Detection.
 - Detection of highly improbable transactions by the credit cardholder.
- □ Network Security.
 - Detecting activities with very low probability by legal user is done.

Anomaly Detection [Outlier Data Detection]

- 3
- Anomaly Detection. Identifying observations that differ greatly from most observations.
- A probabilistic approach to anomaly detection.
 - Creating a probabilistic model from the data [Expressing the probability of seeing any possible event]
 - Specify observations that are very unlikely to occur.

$$p(x) < \epsilon$$

Gaussian Distribution(Normal)

Gaussian Distribution

5

Gaussian Distribution. Suppose x has Gaussian Distribution with average of μ and variance is σ^{2}

Univariate Gaussian Distribution

6

Parameter Estimation

Data collection.

D Purpose. Estimation of values μ and σ

 $\{x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(m)}\}$

Anomaly Detection Algorithm

Estimation of Distribution

Training set.

9

$$\{x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(m)}\}, \qquad x^{(i)} \in \mathbb{R}^n$$

Assumptions.

$$x_j \sim N(\mu_j, \sigma_j^2)$$

 (σ_{i}^{2})

☐ Features follow a normal distribution.

□ There is no correlation between features.[Diagonal covariance matrix]

$$p(x) = p(x_1; \mu_1, \sigma_1^2) p(x_2; \mu_2, \sigma_2^2) p(x_3; \mu_3, \sigma_3^2) \cdots p(x_n; \mu_n, \sigma_n)$$
$$= \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2)$$

Anomaly Detection Algorithm

10

Determining features that can be useful in anomaly detection.

□ Estimation of parameters (for $n \ge j \ge 1$)

$$\mu_{j} = \frac{1}{m} \sum_{i=1}^{m} x_{j}^{i} \qquad \sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{j}^{i} - \mu_{j})^{2}$$

 \Box Calculation p(x) for the new data of x

$$P(\mathbf{x}) = \prod_{j=1}^{n} p(x_j; \mu_j; \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{\left(x_j - \mu_j\right)^2}{2\sigma_j^2}\right)$$

 \Box Printing the <<yes>> output if $p(x) < \epsilon$

Example

11

Development and Measurement of Anomaly Detection Systems

Numerical Evaluation

13

Importance.

□ During the process of developing learning systems, if we have a method to evaluation the system, then Many decisions (such as feature selection, etc.) will become much simpler.

 \Box Suppose we have some labeled data that (y = 0) is its normality and its abnormality is (y = 1).

Training collection

□ Validation set.

Test set.

 $\{ x^{(1)}, x^{(2)}, x^{(3)}, \cdots, x^{(m)} \}$ $\{ \left(x^{(1)}_{lv}, y^{()}_{cv} \right), \left(x^{(2)}_{cv}, y^{(2)}_{cv} \right), \cdots, \left(x^{(m_{cv})}_{cv}, y^{(m_{cv})}_{cv} \right) \}$ $\{ \left(x^{(1)}_{test}, y^{(1)}_{test} \right), \left(x^{(2)}_{test}, y^{(2)}_{test} \right), \cdots, \left(x^{(m_{test})}_{test}, y^{(m_{test})}_{test} \right) \}$

Example

Data collection. Engine performance information

- □ 10000 Unbroken engine
- □ 20 broken engine

Data assortment.

Training set.	6000 unbroken engine[Single Category Assortment]
Uvalidation set.	2000 unbroken engine and 10 broken engine

Experimental set. 2000 unbroken engine and 10 broken engine

Algorithm Evaluation

15

 \Box Instruction. Development of the p(x) model according to the training set

 $y = \begin{cases} 1, & p(x) < \varepsilon \\ 0, & p(x) \ge \varepsilon \end{cases}$

□ Forecasting. For samples in the validation or training set

Possible evaluation factor.

□ true positive, false positive, true negative, false negative

Accuracy rate and reminder rate

F1 score

 \Box Attention. Validation set can be used to choose a suitable value for \mathcal{E} .

Evaluation Factor

Evaluation factor. For unbalanced data

		real		
		y = 1	$oldsymbol{y} = oldsymbol{0}$	
predict	y = 1	TP	FP	
	$oldsymbol{y} = oldsymbol{0}$	FN	TN	

Anomaly Detection or Supervised Learning?

Anomaly detection or supervised learning?

Monitored Learning

- □ Number of samples.
 - □ Large numbers of positive and negative samples

Positive sample.

- Number of positive examples for the algorithm to understand them, is enough.
- New positive samples are similar to positive ones that the algorithm was previously faced, during the training process.

Anomaly Detection

□ Number of samples.

□ The ratio of the number of positive to negative samples is very low

Different "Types" of anomalies.

- For any algorithm, learning anomalies from small numbers of positive samples is very difficult.
- New anomalies may not be similar to anomalies that have been seen before.

Anomaly detection or monitored learning?

Monitored learning

- □ Spam detection.
- □ Weather forecast.

Anomaly detection

□ Scam detection

Construction and production (making airplane engines).

□ Diagnosis of malignant cancerous tumors. □ Monitoring machines in data centers.

Δ...

Select Features

Converting the Feature with Abnormal Distribution to the Feature with Normal Distribution

 $x^{0.3}$

x = np.random.gamma(1, 2, (10000, 1))
plt.hist(x, 50)

plt.hist(x ** 0.3, 50)

Error Analysis for Helping in Anomaly Detection

Purpose. We want p(x) value:
Be large for normal data.
Be small for abnormal data.

A common problem.

22

There is no differences between normal and abnormal for p(x).

Monitor Computers in Data Centers

Features selecting. Selection of features that are very small or very large if there is an anomaly.

- Memory usage
- □ Number of disk accesses per second
- Processor load
- Network traffic

Add new features to detect abnormal conditions.

□ The ratio of processor load to network traffic

[For example, if the processor is stuck in an infinite loop, the value of this feature will be very large.]

Multivariate Gaussian Distribution

Introductory Example

As the processor load increases, memor consumption normally increases increase.

Bivariate Gaussian function

26

Bivariate Gaussian function.

$$p(\mathbf{X};\mu,\Sigma) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{n/2}} \exp\left(-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$

$$u \in \mathbb{R}^{n} \qquad \qquad \Sigma \in \mathbb{R}^{n \times n}$$

Diagonal Covariance Matrix, the Variance of Features is Equal

27

Diagonal Covariance Matrix, the Variance of Features is Equal

28

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 1 \end{bmatrix}$$

Diagonal Covariance Matrix, the Variance of Features is Equal

	[0] ₅	<u>۲</u> 1	ן0
$\mu =$		= [0	1

 $\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 0.6 \end{bmatrix}$

Positive Correlation Between the Features

30

Negative Correlation Between the Features

31

Center (Mean) of Gaussian Distribution

$\mu =$	[0] ₅	<u>۲</u> 1	ן0
		$= \lfloor 0 \rfloor$	1

$$\mu = \begin{bmatrix} 0\\0.5 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0\\0 & 1 \end{bmatrix}$$

 $\mu = \begin{bmatrix} 1.5\\ -0.5 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$

Anomaly Detection with Multivariate Gaussian Function

Multivariate Gaussian Distribution

34

□ Multivariate Gaussian distribution function.

$$p(\mathbf{X};\mu,\Sigma) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{n/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Estimation of parameters.

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \qquad \Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu) (x^{(i)} - \mu)^{T}$$

Multivariate Gaussian Distribution

35

□ Multivariate Gaussian distribution function.

$$p(x; \mu, \Sigma) = \frac{1}{|\Sigma|^{1T^2} (2\pi)^{nT^2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$$

Estimation of parameters.

Algorithm

\Box Estimation of p(x) model parameters

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \qquad \sum_{i=1}^{m} \sum_{i=1}^{m} (x^{(i)} - \mu) (x^{(i)} - \mu)^{\mathrm{T}}$$

Calculate the value of p(x) for the new data of x $p(x; \mu, \Sigma) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{n/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)\right)$

 \Box Printing the <<yes>> output if $p(x) < \epsilon$

Relation with the Primary Model

□ Relation with multivariate Gaussian distribution.

$$p(x; \mu, \Sigma) = \frac{1}{|\Sigma|^{1/2} (2\pi)^{n/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$$

Introductory Model or Multivariate Gaussian Distribution

- □ Introductory model.
 - \Box Creating features is done manually. (x_1/x_2)
 - Computational costs are relatively low.
 - □ If the number of training samples is small, it still works correctly. [Number of parameters: 2n]
- □ Multivariate gaussian distribution.
 - □ It automatically learns the correlation between features.
 - Computational costs are high. [Calculating the inverse of the covariance matrix]
 - The number of training samples should be more than the number of features. [Invertibility of matrix Σ]